Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-01T02:12:51.407Z Has data issue: false hasContentIssue false

Conventionalism and the Origins of the Inertial Frame Concept

Published online by Cambridge University Press:  31 January 2023

Robert DiSalle*
Affiliation:
University of Western Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The obvious metaphysical differences between Newton and Leibniz concerning space, time, and motion reflect less obvious differences concerning the relation between geometry and physics, expressed in the questions: what are the invariant quantities of classical mechanics, and what sort of geometrical frame of reference is required to represent those quantities? Leibniz thought that the fundamental physical quantity was “living force” (mv2), of which every body was supposed to have a definite amount; this notion violates the classical principle of relativity, since it makes a physical distinction between uniform velocity and absolute rest. But Leibniz did not try to represent this physical quantity in a spatio-temporal reference frame, assuming, instead, that all such frames are equivalent so long as they agree on the relative motions (changes in the mutual Euclidean distances) among bodies.

Type
Part IV. History of Philosophy of Science
Copyright
Copyright © Philosophy of Science Association 1991

References

Barbour, J. (1989), Absolute or Relative Motion. v. 1. Cambridge: Cambridge University Press.Google Scholar
DiSalle, R. (1988), Space, Time, and Inertia in the Foundations of Newtonian Physic., 18701905. Ph.D. dissertation, University of Chicago.Google Scholar
Frege, G. (1891), “Uber das Tr gheitsgesetz.” Zeitschrift für Philosophie and philosophische Kriti. 98:145–61.Google Scholar
Lange, L. (1885), “Ueber die wissenschaftliche Fassung des Galilei’schen Beharrungsgesetzes.” Wundt’s Philosophische Studien. 2: 266–97.Google Scholar
Lange, L. (1885a), “Nochmals ueber das Beharrungsgesetz.” Wundfs Philosophische Studien. 2: 539–45.Google Scholar
Lange, L.(1885b), “Uber das Beharrungsgesetz.” Berichte der Koniglichen Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematischphysische Classe. 37: 333–51.Google Scholar
Lange, L. (1886), Die geschichtliche Entwickelung des Bewegungsbegriffes und ihr voraussichtliches Endergebniss. Ein Beitrag zur historischen Kritik der mechanischen Principien. Leipzig: Wilhelm Engelmann.Google Scholar
Lange, L. (1902), “Das Inertialsystem vor dem Forum der Naturforschung Kritisehes und Antikritisches.” Wundt’s Philosophische Studien. 20, v. 2:171.Google Scholar
Mach, E. (1883), Die Mechanik in ihrer Entwickelung, historisch-kritisch dargestellt.. Leipzig: F.A. Brockhaus. 9th edition, 1933.Google Scholar
Neumann, C. (1870), Ueber die Principien der Galilei-Newton’schen Theorie.. Leipzig: B.G. Teubner.Google Scholar
Newton, I. (1729), The Mathematical Principles of Natural Philosophy.. Translated by Andrew Motte. London. Reprint: New York: The Philosophical Library, 1964.Google Scholar
Streintz, H. (1883), Die physikalischen Grundlagen der Mechanik.. Leipzig: B.G. Teubner.Google Scholar
Thomson, J. (1884), “On the Law of Inertia; the Principle of Chronometry; and the Principle of Absolute Clinural Rest, and of Absolute Rotation.” Proceedings of the Royal Society of Edinburgh.. 12: 568–78.CrossRefGoogle Scholar
Thomson, W. and Tait, P.G. (1867), Treatise on Natural Philosoph.. Cambridge: Cambridge University Press.Google Scholar