Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T22:00:50.514Z Has data issue: false hasContentIssue false

Relative and absolute ages of Galactic globular clusters

Published online by Cambridge University Press:  01 October 2008

Ata Sarajedini*
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FLUSA email: ata@astro.ufl.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a review of the latest work concerned with the relative and absolute ages of the Galactic globular clusters (GCs). Relative age-dating techniques generally divide into two types - those that measure a magnitude difference between two features in the color-magnitude diagram (i.e. Vertical Methods) and those that rely on color differences in the color-magnitude diagram (i.e. Horizontal Methods). Both types of diagnostics have been successfully applied and generally reach the same conclusions. Galactic GCs exhibit a mean age range of ~3 Gyr, smaller (or nonexistent) for metal-poor clusters and larger (as much as 6 Gyr) for metal-rich ones. Generally speaking, the inner-halo GCs are older and more uniform in age as compared with those outside of the solar circle. Furthermore, the tendency of GCs with predominantly red horizontal branches (HBs) located in the outer halo to be preferentially younger than those with bluer HBs closer to the Galactic center suggests that age is the second parameter which, in addition to metal abundance, controls the HB morphology. In particular, we present additional compelling evidence supporting this assertion using a detailed examination of new photometry for the classic second-parameter cluster pair NGC 288 and NGC 362. Moving on to the absolute ages, we note that the absolute ages of the most metal-poor Galactic GCs sets a lower limit on the age of the Universe. The preferred age indicator for absolute ages is the luminosity of the main-sequence turnoff because most theoretical models agree on the onset of hydrogen exhaustion in the cores of low-mass stars. Based on the technique of main-sequence fitting to field subdwarfs with Hipparcos parallaxes, we find an age of 11.6+1.4−1.1 Gyr for four metal-poor GCs with deep color-magnitude diagrams on a consistent photometric scale; this age is consistent with the results of a number of previous investigations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bergbusch, P. A. & VandenBerg, D. A. 1997, AJ, 114, 2604CrossRefGoogle Scholar
Bolte, M. J. 1989, AJ, 97, 1688CrossRefGoogle Scholar
Carretta, E. & Gratton, R. G. 1997, A&AS, 121, 95Google Scholar
Carretta, E., Gratton, R. G., Clementini, G., & Fusi Pecci, F. 2000, ApJ, 533, 215CrossRefGoogle Scholar
Chaboyer, B., Demarque, P., & Sarajedini, A. 1996, ApJ, 459, 558CrossRefGoogle Scholar
Chaboyer, B., Demarque, P., Kernan, P. J., & Krauss, L. M. 1998, ApJ, 494, 96CrossRefGoogle Scholar
Chaboyer, B., Fenton, W. H., Nelan, J. E., Patnaude, D. J., & Simon, F. E. 2001, ApJ, 562, 521CrossRefGoogle Scholar
De Angeli, F., et al. 2005, AJ, 130, 116CrossRefGoogle Scholar
Dotter, A., Chaboyer, B., Jevremović, D., Baron, E., Ferguson, J. W., Sarajedini, A., & Anderson, J. 2007, AJ, 134, 376CrossRefGoogle Scholar
Dotter, A., Sarajedini, A., & Yang, S. C. 2008, AJ, 136, 1407CrossRefGoogle Scholar
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371Google Scholar
Green, E. M. & Norris, J. E. 1990, ApJ, 353, L17CrossRefGoogle Scholar
Iben, I. & Renzini, A. 1984, Phys. Rep., 105, 329CrossRefGoogle Scholar
Jimenez, R. & Padoan, P. 1996, ApJ, 463, L17CrossRefGoogle Scholar
Kepner, J. V. 1999 ApJ, 117, 2063CrossRefGoogle Scholar
Korn, A. J., Grundahl, F., Richard, O., Mashonkina, L., Barklem, P. S., Collet, R., Gustafsson, B., & Piskunov, N. 2007, ApJ, 671, 402CrossRefGoogle Scholar
Lee, Y. -W., Demarque, P., & Zinn, R. J. 1994, ApJ, 423, 248CrossRefGoogle Scholar
Marin-Franch, A. et al. 2009, AJ, submittedGoogle Scholar
Meissner, F. & Weiss, A. 2006, A&A, 456, 1085Google Scholar
Milone, A. et al. 2008, ApJ, 673, 241CrossRefGoogle Scholar
Paczynski, B. 1984, ApJ, 284, 670CrossRefGoogle Scholar
Reid, I. N. 1997, AJ, 114, 161CrossRefGoogle Scholar
Rosenberg, A., Saviane, I., Piotto, G., & Aparicio, A 1999 AJ, 118, 2306CrossRefGoogle Scholar
Salaris, M. & Weiss, A. 2002 A&A, 388, 492Google Scholar
Sandage, A. 1981, ApJS, 46, 41CrossRefGoogle Scholar
Sandage, A. & Wallerstein, G. 1960, ApJ, 131, 598CrossRefGoogle Scholar
Sarajedini, A. 1997, AJ, 113, 682CrossRefGoogle Scholar
Sarajedini, A. et al. 2007, AJ, 133, 1658CrossRefGoogle Scholar
Sarajedini, A., Chaboyer, B., & Demarque, P. 1997, PASP, 109, 1321CrossRefGoogle Scholar
Sarajedini, A. & Demarque, P. 1990, ApJ, 365, 219CrossRefGoogle Scholar
Sarajedini, A. & Geisler, D. 1996 AJ, 112, 2013CrossRefGoogle Scholar
Sarajedini, A. & Mighell, K. J. 1996, unpublishedGoogle Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525CrossRefGoogle Scholar
Searle, L. & Zinn, R. J. 1978, ApJ, 225, 357CrossRefGoogle Scholar
Stetson, P. B. 2009, This VolumeGoogle Scholar
Stetson, P. B., Vandenberg, D. A., Bolte, M. 1996, PASP, 108, 560CrossRefGoogle Scholar
Stetson, P. B., et al. 1999, AJ, 117, 247CrossRefGoogle Scholar
VandenBerg, D. A. 2000, ApJS, 129, 315CrossRefGoogle Scholar
VandenBerg, D. A., Bolte, M., & Stetson, P. B. 1990, AJ, 100, 445CrossRefGoogle Scholar