Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T21:19:36.220Z Has data issue: false hasContentIssue false

A Monte Carlo study of cosmological parameter estimators from galaxy cluster number counts

Published online by Cambridge University Press:  01 July 2015

Mariana Penna-Lima
Affiliation:
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, 12227-010, São José dos Campos, Brazil email: mariana.lima@inpe.br, ca.wuensche@inpe.br
Martín Makler
Affiliation:
Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150 22290-180, Rio de Janeiro, Brasil email: martin@cbpf.br
Carlos A. Wuensche
Affiliation:
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, 12227-010, São José dos Campos, Brazil email: mariana.lima@inpe.br, ca.wuensche@inpe.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models for galaxy clusters abundance and their spatial distribution are sensitive to cosmological parameters. Present and future surveys will provide high-redshift sample of clusters, such as Dark Energy Survey (z ⩽ 1.3), making cluster number counts one of the most promising cosmological probes. In the literature, some cosmological analyses are carried out using small cluster catalogs (tens to hundreds), like in Sunyaev-Zel'dovich (SZ) surveys. However, it is not guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this scenario. In this work we study different estimators of the cold dark matter density parameter Ωc, σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance. Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we determine the presence of bias and how it varies with the size of the sample. Our fiducial models are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do not go away with increasing sample sizes and they may become the dominant source of error for an all sky survey at the SPT sensitivity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARAA, 49, 409Google Scholar
Benson, B. A., de Haan, T., Dudley, J. P., Reichardt, C. L., Aird, K., et al. 2013, ApJ, 763, 147Google Scholar
Penna-Lima, M., Makler, M., & Wuensche, C. A. 2014, JCAP, 5, 39CrossRefGoogle Scholar
Vanderlinde, K., Crawford, T. M., de Haan, T., Dudley, J., Shaw, L., et al. 2010, ApJ, 722, 1180Google Scholar