Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T05:50:03.705Z Has data issue: false hasContentIssue false

GMC Origins and Turbulent Motions in Spiral and Dwarf Galaxies

Published online by Cambridge University Press:  21 March 2013

Bruce G. Elmegreen*
Affiliation:
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NYUSA email: bge@us.ibm.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

CO clouds can be non-self-gravitating in high pressure environments, while most should be strongly self-gravitating at low metallicities and ambient pressures. In the LMC, which is HI-rich, GMC formation and destruction should generally include molecule formation and destruction. In M51, which is CO-rich, GMCs grow by coalescence. The Milky Way is between these two situations. In all cases, large clouds form by accretion of gas and smaller clouds independently of the presence of molecules. GMCs in the Milky Way are analogous to dust lanes and spurs in other galaxies. The virial parameter α usually decreases monotonically with increasing cloud mass in surveys, which implies that small scale structure is formed by turbulence. Hierarchies of sequences with decreasing α should be present in cloud complexes from sub-solar masses up to the ambient Jeans mass (107M).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Barnes, P. J., et al. 2011, ApJS, 196, 12Google Scholar
Barriault, L., et al. 2010, MNRAS, 406, 2713CrossRefGoogle Scholar
Belloche, A., et al. 2011, A&A, 535, 2Google Scholar
Bigiel, F., et al. 2008, AJ, 136, 2846Google Scholar
Bissantz, N., Englmaier, P., & Gerhard, O. 2003, MNRAS, 340, 949CrossRefGoogle Scholar
Blitz, L., Magnani, L., & Mundy, L. 1984, ApJ, 282, L9Google Scholar
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792Google Scholar
Dawson, J. R., et al. 2008, MNRAS, 387, 31CrossRefGoogle Scholar
Elmegreen, B. G. 1993, ApJ, 411, 170CrossRefGoogle Scholar
Elmegreen, B. G. & Elmegreen, D. M. 1987, AJ, 320, 182Google Scholar
Englmaier, P., Pohl, M., & Bissantz, N. 2011, MmSAI, 18, 199Google Scholar
Federman, S. R., Glassgold, A. E., Jenkins, E. B., & Shaya, E. J. 1980, ApJ, 242, 545Google Scholar
Giannini, T., et al. 2012, A&A, 539, 156Google Scholar
Grabelsky, D. A., Cohen, R. S., Bronfman, L., Thaddeus, P., & May, J. 1987, ApJ, 315, 122Google Scholar
Hirota, A., Kuno, N., Sato, N., Nakanishi, H., Tosaki, T., & Sorai, K. 2011, ApJ, 737, 40Google Scholar
Koda, J., et al. 2009, ApJ, 700, L132Google Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2008, ApJ, 689, 865Google Scholar
Krumholz, M. R. 2011, in XVth Special Course of the National Observatory of Rio de Janeiro, arXiv:1101.5172Google Scholar
Lada, C. J., Muench, A. A., Rathborne, J., Alves, J. F., & Lombardi, M. 2011, ApJ, 672, 410Google Scholar
Lee, M.-Y., et al. 2012, ApJ, 748, 75Google Scholar
Pineda, J. E., Caselli, P., & Goodman, A. A. 2008, ApJ, 679, 481CrossRefGoogle Scholar
Schlingman, W. M., et al. 2011, ApJS, 195, 14Google Scholar
Shaya, E. J. & Federman, S. R. 1987, ApJ, 319, 76Google Scholar
Shetty, R., Kelly, B. C., & Bigiel, F. 2012, preprintGoogle Scholar
Spitzer, L. Jr. & Jenkins, E. B. 1975, ARA&A, 13, 133Google Scholar
Vogel, S. N., Kulkarni, S. R., & Scoville, N. Z. 1988, Nature, 334, 402Google Scholar
Wong, T., et al. 2011, ApJS, 197, 16Google Scholar