Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T05:40:12.629Z Has data issue: false hasContentIssue false

Effects of dark matter annihilation on the first stars

Published online by Cambridge University Press:  01 June 2008

F. Iocco
Affiliation:
INAF–Oss.Astr.di Arcetri; Largo E. Fermi 5, 50125 Firenze, Italy
A. Bressan
Affiliation:
INAF/Osservatorio Astronomico di Padova; Vicolo dell'Osservatorio 5, Padova, Italy SISSA; Via Beirut 4, Trieste, Italy
E. Ripamonti
Affiliation:
Università degli Studi dell'Insubria, Dip. di Scienze Chimiche, Fisiche e Naturali; Via Valleggio 12, Como, Italy
R. Schneider
Affiliation:
INAF–Oss.Astr.di Arcetri; Largo E. Fermi 5, 50125 Firenze, Italy
A. Ferrara
Affiliation:
SISSA; Via Beirut 4, Trieste, Italy
P. Marigo
Affiliation:
Università degli Studi di Padova, Dip. di Astronomia; Vicolo dell'Osservatorio 3, Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the evolution of the first stars in the universe (Population III) from the early pre–Main Sequence (MS) until the end of helium burning in the presence of WIMP dark matter annihilation inside the stellar structure. The two different mechanisms that can provide this energy source are the contemporary contraction of baryons and dark matter, and the capture of WIMPs by scattering off the gas with subsequent accumulation inside the star. We find that the first mechanism can generate an equilibrium phase, previously known as a dark star, which is transient and present in the very early stages of pre–MS evolution. The mechanism of scattering and capture acts later, and can support the star virtually forever, depending on environmental characteristics of the dark matter halo and on the specific WIMP model.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bertone, G., Hooper, D., & Silk, J., 2005, Phys. Rep. 405, 279CrossRefGoogle Scholar
Desai, S. et al. [Super-Kamiokande Collaboration], 2004, Phys. Rev. D, 70, 109901CrossRefGoogle Scholar
“First Stars III”, 2008, AIP Conf. Proc., 990, Abel, T., Heger, A., and Shea, B. W.'O. edsGoogle Scholar
Freese, K., Spolyar, D., & Aguirre, A., arXiv:0802.1724 [astro-ph]Google Scholar
Freese, K., Gondolo, P., Sellwood, J. A., & Spolyar, D., [Freese, A et al. (2008b)] arXiv:0805.3540 [astro-ph]Google Scholar
Iocco, F., 2008, ApJ, 677, L1CrossRefGoogle Scholar
Iocco, F., Bressan, A., Ripamonti, E., Schneider, R., Ferrara, A., & Marigo, P., MNRAS in press, arXiv:0805.4016 [astro-ph]Google Scholar
Yoon, S. C., Iocco, F., & Akiyama, S., arXiv:0806.2662 [astro-ph]Google Scholar
Spolyar, D., Freese, K., & Gondolo, P., 2008, Phys. Rev. Lett., 100, 051101CrossRefGoogle Scholar
Taoso, M., Bertone, G., Meynet, G., & Ekstrom, S., arXiv:0806.2681 [astro-ph].Google Scholar