Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-12T22:19:17.428Z Has data issue: false hasContentIssue false

The age-metallicity structure of the Milky Way disc with APOGEE

Published online by Cambridge University Press:  02 August 2018

J. Ted Mackereth
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom email: J.E.Mackereth@2011.ljmu.ac.uk
Jo Bovy
Affiliation:
Astronomy and Astrophysics Department, University of Toronto, 50 George Street, Toronto, ON M5S 3H4, Canada email: bovy@astro.utoronto.ca
Ricardo P. Schiavon
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom email: J.E.Mackereth@2011.ljmu.ac.uk
the SDSS-IV/APOGEE Collaboration
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom email: J.E.Mackereth@2011.ljmu.ac.uk Astronomy and Astrophysics Department, University of Toronto, 50 George Street, Toronto, ON M5S 3H4, Canada email: bovy@astro.utoronto.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The best way to trace back the history of star formation and mass assembly of the Milky Way disc is by combining chemical compositions, ages and phase-space information for a large number of disc stars. With the advent of large surveys of the stellar populations of the Galaxy, such data have become available and can be used to pose constraints on sophisticated models of galaxy formation. We use SDSS-III/APOGEE data to derive the first detailed 3D map of stellar density in the Galactic disc as a function of age, [Fe/H] and [α/Fe]. We discuss the implications of our results for the formation and evolution of the disc, presenting new constraints on the disc structural parameters, stellar radial migration and disc flaring. We also discuss how our results constrain the inside out formation of the disc, and determine the surface-mass density contributions at the solar radius for mono-age, mono-[Fe/H] populations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Adibekyan, V. Z., Sousa, S. G., Santos, N. C., Delgado Mena, E., González Hernández, J. I., Israelian, G., Mayor, M., & Khachatryan, G., 2012, A&A, 545, A32Google Scholar
Anders, F., et al., 2017, A&A, 600, A70Google Scholar
Anders, F., et al., 2014, A&A, 564, A115Google Scholar
Andrews, B. H., Weinberg, D. H., Schönrich, R., & Johnson, J. A., 2017, ApJ, 835, 224Google Scholar
Bensby, T., Feltzing, S., Lundström, I., & Ilyin, I., 2005, A&A, 433, 185Google Scholar
Bensby, T., Feltzing, S., & Oey, M. S., 2014, A&A, 562, A71Google Scholar
Bovy, J., Rix, H.-W., Green, G. M., Schlafly, E. F., & Finkbeiner, D. P., 2016, ApJ, 818, 130Google Scholar
Bovy, J., Rix, H.-W., Liu, C., Hogg, D. W., Beers, T. C., & Lee, Y. S., 2012, ApJ, 753, 148Google Scholar
Bovy, J., Rix, H.-W., Schlafly, E. F., Nidever, D. L., Holtzman, J. A., Shetrone, M., & Beers, T. C., 2016, ApJ, 823, 30Google Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, B., Dal Cero, C., Rubele, S., & Nanni, A., 2012, MNRAS, 427, 127Google Scholar
Brook, C. B., et al., 2012, MNRAS, 426, 690Google Scholar
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. C., 2004, ApJ, 612, 894Google Scholar
Cheng, J. Y., et al., 2012, ApJ, 752, 51Google Scholar
Chiappini, C., 2009, IAUS, 254, 191Google Scholar
Fuhrmann, K., 1998, A&A, 338, 161Google Scholar
Gaia Collaboration, et al., 2016, A&A, 595, A2Google Scholar
Gaia Collaboration, et al., 2016, A&A, 595, A1Google Scholar
Hayden, M. R., et al., 2015, ApJ, 808, 132Google Scholar
Holtzman, J. A., et al., 2015, AJ, 150, 148Google Scholar
Mackereth, J. T., et al., 2017, arXiv, arXiv:1706.00018Google Scholar
Majewski, S. R., et al., 2015, arXiv, arXiv:1509.05420Google Scholar
Martig, M., et al., 2016, MNRAS, 456, 3655Google Scholar
Martig, M., Minchev, I., Flynn, C., 2014, MNRAS, 443, 2452Google Scholar
Martig, M., Minchev, I., Flynn, C., 2014, MNRAS, 442, 2474Google Scholar
Miglio, A., et al., 2017, arXiv, arXiv:1706.03778Google Scholar
Minchev, I., Chiappini, C., & Martig, M., 2013, A&A, 558, A9Google Scholar
Minchev, I., Steinmetz, M., Chiappini, C., Martig, M., Anders, F., Matijevic, G., & de Jong, R. S., 2017, ApJ, 834, 27Google Scholar
Nidever, D. L., et al., 2014, ApJ, 796, 38Google Scholar
Prochaska, J. X., Naumov, S. O., Carney, B. W., McWilliam, A., & Wolfe, A. M., 2000, AJ, 120, 2513Google Scholar
Toyouchi, D. & Chiba, M., 2016, ApJ, 833, 239Google Scholar
Zasowski, G., et al., 2013, AJ, 146, 81Google Scholar