Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-18T23:59:12.881Z Has data issue: false hasContentIssue false

Masers in accretion burst sources

Published online by Cambridge University Press:  07 February 2024


Recently, remarkable progress has been made in understanding the formation of high mass stars. Observations provided direct evidence that massive young stellar objects (MYSOs), analogously to low-mass ones, form via disk-mediated accretion accompanied by episodic accretion bursts, possibly caused by disk fragmentation. In the case of MYSOs, the mechanism theoretically provides a means to overcome radiation pressure, but in practice it is poorly studied - only three accretion bursts in MYSOs have been caught in action to date. A significant contribution to the development of the theory has been made with the study of masers, which have proven to be a powerful tool for locating “bursting” MYSOs. This overview focuses on the exceptional role that masers play in the search and study of accretion bursts in massive protostars.

Contributed Paper
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bayandina, O. S., Burns, R. A., Kurtz, S. E., et al. 2019, ApJ, 884, 140 10.3847/1538-4357/ab3fa4CrossRefGoogle Scholar
Bayandina, O. S., Brogan, C. L., Burns, R. A. et al. 2022a, AJ, 163, 83 10.3847/1538-3881/ac42d2CrossRefGoogle Scholar
Bayandina, O. S., Brogan, C. L., Burns, R. A. et al. 2022b, A&A, 664, A44 Google Scholar
Breen, S. L., Sobolev, A. M., Kaczmarek, J. F., et al. 2019a, ApJ (Letters), 876, L25 10.3847/2041-8213/ab191cCrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., et al. 2018, ApJ, 866, 87 10.3847/1538-4357/aae151CrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Towner, A. P. M., et al. 2019, ApJ, 881, L39 10.3847/2041-8213/ab2f8aCrossRefGoogle Scholar
Burns, R. A., Sugiyama, K., Hirota, T., et al. 2020a, Nature Astronomy, 4, 506 10.1038/s41550-019-0989-3CrossRefGoogle Scholar
Burns, R. A., Orosz, G., Bayandina, O., et al. 2020b, MNRAS, 491, 4069 10.1093/mnras/stz3172CrossRefGoogle Scholar
Burns, R. A., Kobak, A., Caratti o Garatti, A., et al. 2022, EVN Mini-Symposium 2021, 19 Google Scholar
Burns, R. A., Uno, Y., Sakai, N., et al. 2023, Nature Astronomy, 7, 557 10.1038/s41550-023-01899-wCrossRefGoogle Scholar
CHIME/FRB Collaboration, et al. 2021, ApJS, 257, 59 10.3847/1538-4365/ac33abCrossRefGoogle Scholar
Caratti o Garatti, A., Stecklum, B., Garcia Lopez, R., et al. 2017, Nature Physics, 13, 276 10.1038/nphys3942CrossRefGoogle Scholar
Chen, X., Sobolev, A. M., Ren, Z.-Y., et al. 2020a, Nature Astronomy, 4, 1170 10.1038/s41550-020-1144-xCrossRefGoogle Scholar
Chen, X., Sobolev, A. M., Breen, S. L., et al. 2020b, ApJ (Letters), 890, L22 10.3847/2041-8213/ab72a5CrossRefGoogle Scholar
Chen, Z., Sun, W., Chini, R., et al. 2021, ApJ, 922, 90 10.3847/1538-4357/ac2151CrossRefGoogle Scholar
Ellingsen, S. P., Voronkov, M. A., Cragg, D. M., et al. 2007, Astrophysical Masers and their Environments, 213 Google Scholar
Fujisawa, K., Yonekura, Y., Sugiyama, K., et al. 2015, ATel, 8286, 1 Google Scholar
Greif, T. H. 2015, Computational Astrophysics and Cosmology, 2, 3 10.1186/s40668-014-0006-2CrossRefGoogle Scholar
Hirota, T., Cesaroni, R., Moscadelli, L., et al. 2021, A&A, 647, A23 Google Scholar
Hosokawa, T., Yoshida, N., Omukai, K., et al. 2012, ApJ (Letters), 760, L37 10.1088/2041-8205/760/2/L37CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., MacLeod, G., et al. 2017, ApJ (Letters), 837, L29 10.3847/2041-8213/aa5d0eCrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., MacLeod, G., et al. 2018, ApJ (Letters), 854, 170 10.3847/1538-4357/aaa962CrossRefGoogle Scholar
MacLeod, G. C., Gaylard, M. J. 1996, MNRAS, 280, 868 10.1093/mnras/280.3.868CrossRefGoogle Scholar
MacLeod, G. C., Smits, D. P., Goedhart, S., et al. 2018, MNRAS, 478, 1077 10.1093/mnras/sty996CrossRefGoogle Scholar
MacLeod, G. C., Sugiyama, K., Hunter, T. R., et al. 2019, MNRAS, 489, 3981 10.1093/mnras/stz2417CrossRefGoogle Scholar
Meyer, D. M. A., Vorobyov, E. I., Elbakyan, V. G., et al. 2019, MNRAS, 482, 5459 10.1093/mnras/sty2980CrossRefGoogle Scholar
Minier, V., Ellingsen, S. P., Norris, R. P., et al. 2003, A&A, 403, 1095 Google Scholar
Moscadelli, L., Sanna, A., Goddi, C., et al. 2017, A&A, 600, L8 Google Scholar
Moscadelli, L., Sanna, A., Goddi, C., et al. 2020, A&A, 635, A118 Google Scholar
Olech, M., Szymczak, M., Wolak, P., et al. 2020, A&A, 634, A41 Google Scholar
Proven-Adzri, E., MacLeod, G. C., Heever, S. P. v. d., et al. 2019, MNRAS, 487, 2407 10.1093/mnras/stz1458CrossRefGoogle Scholar
Sobolev, A. M., Moran, J. M., Gray, M. D., et al. 2018, ApJ, 856, 60 10.3847/1538-4357/aab096CrossRefGoogle Scholar
Stecklum, B., Caratti o Garatti, A., Hodapp, K., et al. 2018, Proceedings of the IAU Symposium 336, 37 Google Scholar
Stecklum, B., Wolf, V., Linz, H., et al. 2021, A&A, 646, A161 Google Scholar
Sugiyama, K., Saito, Y., Yonekura, Y., et al. 2019, ATel, 12446, 1 Google Scholar
Szymczak, M., Olech, M., Sarniak, R., et al. 2018a, MNRAS, 474, 219 10.1093/mnras/stx2693CrossRefGoogle Scholar
Szymczak, M., Olech, M., Wolak, P., et al. 2018b, A&A, 617, A80 Google Scholar
Tapia, M., Roth, M., Persi, P., 2015, MNRAS, 446, 4088 10.1093/mnras/stu2362CrossRefGoogle Scholar
Volvach, A. E., Volvach, L. N., Larionov, M. G., et al. 2020, MNRAS, 494, L59 10.1093/mnrasl/slaa036CrossRefGoogle Scholar
Yang, K., Chen, X., Shen, Z.-Q., et al. 2019, ApJS, 241, 18 10.3847/1538-4365/ab06fbCrossRefGoogle Scholar
Zinnecker, H., Yorke, H. W., 2007, A&A, 45, 481 Google Scholar