Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-06T01:41:15.634Z Has data issue: false hasContentIssue false

Generators and relations of Rees matrix semigroups

Published online by Cambridge University Press:  20 January 2009

H. Ayik
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews Ky16 9SS, Scotland, E-mail address: ayik@dcs.st-and.ac.uk, nik@dcs.st-and.ac.uk
N. Ruškuc
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews Ky16 9SS, Scotland, E-mail address: ayik@dcs.st-and.ac.uk, nik@dcs.st-and.ac.uk
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider finite generation and finite presentability of Rees matrix semigroups (with or without zero) over arbitrary semigroups. The main result states that a Rees matrix semigroup M[S; I, J; P] is finitely generated (respectively, finitely presented) if and only if S is finitely generated (respectively, finitely presented), and the sets I, J and S\U are finite, where U is the ideal of S generated by the entries of P.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1999

References

REFERENCES

1.Campbell, C. M., Robertson, E. F., Ruškuc, N. and Thomas, R. M., Reidemeister-Schreier type rewriting for semigroups, Semigroup Forum 51 (1995), 4762.CrossRefGoogle Scholar
2.Campbell, C. M., Robertson, E. F., Ruškuc, N. and Thomas, R. M., On subsemigroups of finitely presented semigroups, J. Algebra 180 (1996), 121.CrossRefGoogle Scholar
3.Campbell, C. M., Robertson, E. F., Ruškuc, N. and Thomas, R. M., Presentations for subsemigroups – applications to ideals of semigroups, J. Pure Appl. Algebra, to appear.Google Scholar
4.Gomes, G. M. S. and Howie, J. M., On the ranks of certain finite semigroups of transformations, Math. Proc. Cambridge Philos. Soc. 101 (1987), 395403.Google Scholar
5.Howie, J. M., Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).Google Scholar
6.Howie, J. M. and Ruškuc, N., Constructions and presentations for monoids, Comm. Algebra 22 (1994), 62096224.Google Scholar
7.Jura, A., Determining ideals of given finite index in a finitely presented semigroup, Demonstratio Math. 11 (1978), 813827.Google Scholar
8.Lawson, M. V., Abundant Rees matrix semigroups, J. Austral. Math. Soc. 42 (1987), 132142.CrossRefGoogle Scholar
9.Lawson, M. V., Rees matrix semigroups, Proc. Edinburgh Math. Soc. 33 (1990), 2337.Google Scholar
10.McAlister, D. B., Regular Rees matrix semigroups and regular Dubreil-Jacotin semigroups, J. Austral. Math. Soc. 31 (1981), 325336.CrossRefGoogle Scholar
11.McAlister, D. B., Quasi-ideal embeddings and Rees matrix covers for regular semigroups, J. Algebra 152 (1992), 166183.Google Scholar
12.Meakin, J., Fundamental regular semigroups and the Rees construction, Quart. J. Math. Oxford (2) 36 (1985), 91103.CrossRefGoogle Scholar
13.Meakin, J., The Rees construction in regular semigroups, in Semigroups (Colloquia Mathematica Societatis János Bolyai Vol. 39, North-Holland, Amsterdam, 1985), 115155.Google Scholar
14.Pastijn, F. and Petrich, M., Rees matrix semigroups over inverse semigroups, Proc. Royal Soc. Edinburgh 102A (1986), 6190.Google Scholar
15.Rees, D., On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940), 387400.Google Scholar
16.Robertson, E. F., Ruškuc, N. and Wiegold, J., Generators and relations of direct products of semigroups, Trans. Amer. Math. Soc. 350 (1998), 26652685.Google Scholar
17.Ruškuc, N., On the rank of completely 0-simple semigroups, Math. Proc. Cambridge Philos. Soc. 116 (1994), 325338.CrossRefGoogle Scholar
18.Ruškuc, N., On large subsemigroups and finiteness conditions of semigroups, Proc. London Math. Soc. 76 (1998), 383405.CrossRefGoogle Scholar
19.Suschkewitsch, A., Über die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Math. Ann. 99 (1928), 3040.CrossRefGoogle Scholar