Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-lwxm7 Total loading time: 0.21 Render date: 2021-06-21T11:15:10.382Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

A Decomposition Theorem for Immersions of Product Manifolds

Published online by Cambridge University Press:  17 April 2015

Ruy Tojeiro
Affiliation:
Universidade Federal de São Carlos, Via Washington Luiz, Km 235, 13565-905 São Carlos, Brazil (tojeiro@dm.ufscar.br)
Corresponding
E-mail address:

Abstract

We introduce polar metrics on a product manifold, which have product and warped product metrics as special cases. We prove a de Rham-type theorem characterizing Riemannian manifolds that can be locally or globally decomposed as a product manifold endowed with a polar metric. For such a product manifold, our main result gives a complete description of all its isometric immersions into a space form whose second fundamental forms are adapted to its product structure in the sense that the tangent spaces to each factor are preserved by all shape operators. This is a far-reaching generalization of a basic decomposition theorem for isometric immersions of Riemannian products due to Moore as well as of its extension by Nölker to isometric immersions of warped products.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Carter, S. and Dursun, U., Partial tubes and Chen submanifolds, J. Geom. 63 (1998), 3038.CrossRefGoogle Scholar
2. Carter, S. and West, A., Partial tubes about immersed manifolds, Geom. Dedicata 54 (1995), 145169.CrossRefGoogle Scholar
3. Dillen, F. and Nölker, S., Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine Angew. Math. 435 (1993), 3363.Google Scholar
4. Hiepko, S., Eine innere Kennzeichnung der verzerrten Produkte, Math. Annalen 241 (1979), 209215.CrossRefGoogle Scholar
5. Moore, J. D., Isometric immersions of Riemannian products, J. Diff. Geom. 6 (1971), 159168.CrossRefGoogle Scholar
6. Nölker, S., Isometric immersions of warped products, Diff. Geom. Applic. 6 (1996), 3150.CrossRefGoogle Scholar
7. Reckziegel, H. and Schaaf, M., De Rham decomposition of netted manifolds, Results Math. 35 (1999), 175191.CrossRefGoogle Scholar
8. Tojeiro, R., Conformal de Rham decomposition of Riemannian manifolds, Houston J. Math. 32 (2006), 725743.Google Scholar
7
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Decomposition Theorem for Immersions of Product Manifolds
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Decomposition Theorem for Immersions of Product Manifolds
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Decomposition Theorem for Immersions of Product Manifolds
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *