Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T23:33:58.570Z Has data issue: false hasContentIssue false

A CONTROL LIST FOR THE SYSTEMATIC IDENTIFICATION OF DISTURBANCE FACTORS

Published online by Cambridge University Press:  27 July 2021

Peter Welzbacher*
Affiliation:
Technical University of Darmstadt; Institute for Product Development and Machine Elements (pmd)
Gunnar Vorwerk-Handing
Affiliation:
Technical University of Darmstadt; Institute for Product Development and Machine Elements (pmd)
Eckhard Kirchner
Affiliation:
Technical University of Darmstadt; Institute for Product Development and Machine Elements (pmd)
*
Welzbacher, Peter, Technical University Darmstadt, Institute for Product Development and Machine Elements (pmd), Germany, peter.welzbacher@tu-darmstadt.de

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The importance of considering disturbance factors in the product development process is often emphasized as one of the key factors to a functional and secure product. However, there is only a small number of tools to support the developer in the identification of disturbance factors and none of them yet ensures that the majority of occurring disturbance factors is considered. Thus, it is the aim of this contribution to provide a tool in form of a control list for the systematic identification of disturbance factors. At the beginning of this contribution, the terms “disturbance factor” and “uncertainty” are defined based on a literature review and different approaches for the classification of uncertainty are presented. Subsequently, the fundamentals of multipole based model theory are outlined. Moreover, a first approach in terms of a control list for a systematic identification of disturbance factors is discussed. Based on the discussed approach and taking the identified weaknesses as a starting point, a control list is presented that combines the existing basic concept of the control list with the fundamentals of multipole based model theory.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Andersson, P. (1997), “On Robust Design in the Conceptual Design Phase: A Qualitative Approach”, Journal of Engineering Design, Vol. 8 No. 1, pp. 7589.CrossRefGoogle Scholar
Chakhunashvili, A., Johansson, P.M. and Bergman, B.L.S. (2004), “Variation mode and effect analysis”, in Annual Symposium Reliability and Maintainability, 2004 - RAMS, Jan. 26-29, 2004, Los Angeles, CA, USA, IEEE, pp. 364369.CrossRefGoogle Scholar
Engelhardt, R., Koenen, J.F., Enss, G.C., Sichau, A., Platz, R., Kloberdanz, H., Birkhofer, H. and Hanselka, H. (2010), “A Model to Categorise Uncertainty in Load-Carrying Systems”, 1st MMEP International Conference on Modelling and Management Engineering Processes, pp. 5364.Google Scholar
Feldhusen, J. and Grote, K.-H. (Eds.) (2013), Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung, 8th ed., Springer Berlin Heidelberg; Springer International Publishing AG, Berlin, Heidelberg, Cham.CrossRefGoogle Scholar
Galbraith, J.R. (1973), Designing complex organizations, Organization development, Addison-Wesley, Reading, Mass.Google Scholar
Hanselka, H. and Platz, R. (2010), “Ansätze und Maßnahmen zur Beherrschung von Unsicherheit in lasttragenden Systemen des Maschinenbaus”, Konstruktion, 11/12, pp. 5562.Google Scholar
Heinrich, B. and Schneider, W. (2019), Grundlagen Regelungstechnik: Einfache Übungen, praktische Beispiele und komplexe Aufgaben, Lehrbuch, 5th revised and extended ed., Springer Vieweg, Wiesbaden.CrossRefGoogle Scholar
International Organization for Standardization (2009), Risk management: Vocabulary (ISO Guide 73), November 2009, Beuth, Berlin.Google Scholar
Janschek, K. (2010), Systementwurf mechatronischer Systeme: Methoden - Modelle - Konzepte, Springer, Berlin.CrossRefGoogle Scholar
Koller, R. (1998), Konstruktionslehre für den Maschinenbau: Grundlagen zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen; mit 16 Tabellen, 4th revised and extended ed., Springer, Berlin.CrossRefGoogle Scholar
Kreye, M.E., Goh, Y. and Newnes, L.B. (2011), “Manifestation of uncertainty. a classification”, in Proceedings of the 18th International Conference on Engineering Design, ICED 11, Design Society, København, pp. 96107.Google Scholar
Lotz, J. (2018), “Beherrschung von Unsicherheit in der Baureihenentwicklung”, Dissertation, Technical University of Darmstadt, Darmstadt, 2018.Google Scholar
Mathias, J. (2016), “Auf dem Weg zu robusten Lösungen”, Doctoral Thesis, Technical University of Darmstadt, Darmstadt, 2016.Google Scholar
Mathias, J., Kloberdanz, H., Engelhardt, R. and Birkhofer, H. (2010), “Strategies and principles to design robust products”, DS 60: Proceedings of DESIGN 2010, the 11th International Design Conference, Dubrovnik, Croatia, pp. 341350.Google Scholar
Oberkampf, W.L., DeLand, S.M., Rutherford, B.M., Diegert, K.V. and Alvin, K.F. (2002), “Error and uncertainty in modeling and simulation”, Reliability Engineering & System Safety, Vol. 75 No. 3, pp. 333357.CrossRefGoogle Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Engineering Design: A Systematic Approach, 3rd ed., Springer London; Springer International Publishing AG, London, Cham.CrossRefGoogle Scholar
Taguchi, G., Chowdhury, S., Wu, Y., Taguchi, S. and Yano, H. (Eds.) (2005), Taguchi's quality engineering handbook, John Wiley & Sons, Hoboken, N.J.Google Scholar
Vorwerk-Handing, G. (2021), “Erfassung systemspezifischer Zustandsgrößen. Physikalische Effektkataloge zur systematischen Identifikation potentieller Messgrößen”, Doctoral Thesis, Technical University of Darmstadt, Darmstadt, 2021.Google Scholar
Vorwerk-Handing, G., Martin, G. and Kirchner, E. (2018), “Integration of Measurement Functions in Existing Systems – Retrofitting as Basis for Digitalization”, paper presented at NordDesign 2018.Google Scholar
Vorwerk-Handing, G., Welzbacher, P. and Kirchner, E. (2020), “Consideration of uncertainty within the conceptual integration of measurement functions into existing systems”, Procedia Manufacturing, Vol. 52, pp. 301306.CrossRefGoogle Scholar
Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A., Janssen, P. and Krayer von Krauss, M.P. (2003), “Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support”, Integrated Assessment, Vol. 4 No. 1, pp. 517.CrossRefGoogle Scholar
Wellstead, P.E. (1979), Introduction to physical system modelling, Acad. Pr, London [etc.].Google Scholar