Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-25T08:30:35.071Z Has data issue: false hasContentIssue false

APPLICATION OF THE RE-CYCLING METHOD TO SUPPORT DESIGN FOR AND FROM END-OF-LIFE.

Published online by Cambridge University Press:  27 July 2021

Jorge Martínez Leal*
Affiliation:
University of Bordeaux, CNRS, Arts et Métiers Institute of Technology, Bordeaux INP, INRAE,I2M Bordeaux, F-33400 Talence, France University of Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, France
Stéphane Pompidou
Affiliation:
University of Bordeaux, CNRS, Arts et Métiers Institute of Technology, Bordeaux INP, INRAE,I2M Bordeaux, F-33400 Talence, France
Carole Charbuillet
Affiliation:
Arts et Métiers Institute of Te
Nicolas Perry
Affiliation:
*
Martínez Leal, Jorge, Université de Bordeaux, I2M / IMS, France, jorge.martinez-leal@u-bordeaux.fr

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nowadays, the world is shifting towards a more sustainable way of life, and product designers have an important part in this change. They have to eco(re)design their products to make them environmentally conscious throughout their lifecycle, and especially at their end-of-life (EoL). However, one can observe that synergy between product designers and recycling-chains stakeholders is lacking, mainly due to their weak communication. While many design-for-EoL approaches coexist in the literature, design from EoL must also be taken into account to fully develop a circular economy.

RE-CYCLING is an innovative design approach that supports both design for and from EoL. This paper focuses on the recycling EoL-option and the validation of the associated indicators. To validate the design-for-recycling indicators, the recyclability of three smartphones is assessed. It is expected that indicators provide a similar score as none of them was designed to be recycled; results comply with expectations. In parallel, the convenience of using recycled materials in smartphones is analysed to validate our design-from-recycling indicators. It is found that the proposed indicators can indeed support designers integrating recycled materials in products.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2021. Published by Cambridge University Press

References

Safran, Bleu, Hugrel, C. and Palluau, M. (2017), ICV de La Gestion de Fin de Vie Des Matériaux Constitutifs Des Équipements Électriques et Électroniques, Synthèse, p. 93.Google Scholar
Chen, W.-S. and Tien, Y.-F.C. and , K.-W. (2020), “Recovery of Gallium and Indium from Waste Light Emitting Diodes”, Journal of the Korean Institute of Resources Recycling, pp. 8188.Google Scholar
Deloitte Développement Durable, Deprouw, A., Jover, M., Chouvenc, S., ADEME and Fangeat, E. (2017), Rapport Annuelle Du Registre Des Déchets d’équipements Électriques et Électroniques, p. 132.Google Scholar
Eco3e. (2016), “Plastics”, November, available at: http://eco3e.eu/en/base/plastics/ (accessed 3 October 2019).Google Scholar
European Parliament. (2008), Directive 2008/98/EC of the European Parliament and of the Council on Waste and Repealing Certain Directives, p. 28.Google Scholar
European Parliament. (2009), Directive 2009/125/EC of the European Parliament and of the Council Establishing a Framework for the Setting of Ecodesign Requirements for Energy-Related Products.Google Scholar
European Parliament. (2012), Directive 2012/19/EU of the European Parliament and of the Council on Waste Electrical and Electronic Equipment (WEEE), p. 34.Google Scholar
Fairphone. (2017), Fairphone's Report on Recyclability.Google Scholar
Fontana, D., Pietrantonio, M., Pucciarmati, S., Rao, C. and Forte, F. (2019), “A comprehensive characterization of End-of-Life mobile phones for secondary material resources identification”, Waste Management, Vol. 99, pp. 2230.10.1016/j.wasman.2019.08.011CrossRefGoogle ScholarPubMed
Fraunhofer IZM. (2016), Life Cycle Assessment of the Fairphone 2, Fraunhofer IZM, available at: https://www.researchgate.net/publication/311425397_Life_Cycle_Assessment_of_the_Fairphone_2.Google Scholar
Go, T.F., Wahab, D.A. and Hishamuddin, H. (2015), “Multiple generation life-cycles for product sustainability: the way forward”, Journal of Cleaner Production, Vol. 95, pp. 1629.10.1016/j.jclepro.2015.02.065CrossRefGoogle Scholar
Grimaud, G. (2019), “Conception des scénarios de recyclage pilotée par l’évaluation des performances des procédés”, 18 February.Google Scholar
Güvendik, M. (2014), From Smartphone to Futurephone: Assessing the Environmental Impacts of Different Circular Economy Scenarios of a Smartphone Using LCA.Google Scholar
Hischier, R. and Lehmann, M. (2007), Life Cycle Inventories of Electric and Electronic Equipment: Production, Use and Disposal. Part III - Electronic Devices, No. ecoinvent report No. 18, Swiss Centre for Life Cycle Inventories, Dübendorf.Google Scholar
Horta Arduin, R., Grimaud, G., Martínez Leal, J., Pompidou, S., Charbuillet, C., Laratte, B., Alix, T., et al. . (2019), “Influence of scope definition in recycling rate calculation for European e-waste extended producer responsibility”, Waste Management, Vol. 84, pp. 256268.10.1016/j.wasman.2018.12.002CrossRefGoogle ScholarPubMed
Ishii, K., Eubanks, C.F. and Di Marco, P. (1994), “Design for product retirement and material life-cycle”, Materials & Design, Vol. 15 No. 4, pp. 225233.10.1016/0261-3069(94)90007-8CrossRefGoogle Scholar
Leal, J.M., Pompidou, S., Charbuillet, C. and Perry, N. (2018), “Product Recoverability: A Review of Assessment Methods”, Procedia CIRP, Vol. 69, pp. 710715.10.1016/j.procir.2017.11.061CrossRefGoogle Scholar
Lindkvist Haziri, L. and Sundin, E. (2020), “Supporting design for remanufacturing - A framework for implementing information feedback from remanufacturing to product design”, Journal of Remanufacturing, Vol. 10 No. 1, pp. 5776.10.1007/s13243-019-00074-7CrossRefGoogle Scholar
Lindkvist Haziri, L., Sundin, E. and Sakao, T. (2019), “Feedback from Remanufacturing: Its Unexploited Potential to Improve Future Product Design”, Sustainability, Multidisciplinary Digital Publishing Institute, Vol. 11 No. 15, p. 4037.Google Scholar
Maier, C. (2009), Design Guides for Plastics, Econology Ltd, p. 67.Google Scholar
Martínez Leal, J. (2019), Développement d'outils d'aide à la décision en conception pilotés par l'analyse multicritère de la valorisabilité du produit et l'outillage des lignes directrices d’écoconception pour la fin de vie, Thèse de doctorat, Ensam, Bordeaux, 19 December, available at: https://pastel.archives-ouvertes.fr/tel-02939064.Google Scholar
Martínez Leal, J., Pompidou, S., Charbuillet, C. and Perry, N. (2020), “Design for and from Recycling: A Circular Ecodesign Approach to Improve the Circular Economy”, Sustainability, Multidisciplinary Digital Publishing Institute, Vol. 12 No. 23, p. 9861.Google Scholar
Mathieux, F. (2002), Contribution à l'intégration de la valorisation en fin de vie dès la conception d'un produit . Une méthode basée sur l’évaluation multicritères de la recyclabilité du produit et sur l'identification de ses points faibles de conception, phdthesis, Arts et Métiers ParisTech, Chambéry, France, available at: https://tel.archives-ouvertes.fr/tel-00005689/document.Google Scholar
Maudet, C., Bertoluci, G. and Froelich, D. (2007), “Integrating plastic recycling industries into the automotive supply chain”, available at: https://hal.archives-ouvertes.fr/hal-00719227 (accessed 21 August 2020).Google Scholar
Pahl, G., Beitz, W., Feldhusen, J., Grote, K.-H., Wallace, K. and Blessing, L.T. (Eds.). (2007), Engineering Design: A Systematic Approach, 3. ed., Springer, London.10.1007/978-1-84628-319-2CrossRefGoogle Scholar
Reuter, M., Schaik, A. and Ballester, M. (2018), “Limits of the Circular Economy: Fairphone Modular Design Pushing the Limits”, World of Metallurgy - ERZMETALL, Vol. 71.Google Scholar
Rzeźnik, C., Rybacki, P. and Molińska, A. (2008), “Assessment of the effect of the material diversity of agricultural machines on their recyclability”, Journal of Research and Applications in Agricultural Engineering, Vol. Vol. 53 No. nr 1, pp. 1215.Google Scholar
Singh, N., Duan, H., Yin, F., Song, Q. and Li, J. (2018), “Characterizing the Materials Composition and Recovery Potential from Waste Mobile Phones: A Comparative Evaluation of Cellular and Smart Phones”, ACS Sustainable Chemistry & Engineering, American Chemical Society, Vol. 6 No. 10, pp. 1301613024.10.1021/acssuschemeng.8b02516CrossRefGoogle Scholar
Szałatkiewicz, J. (2014), “Metals Content in Printed Circuit Board Waste”, Polish Journal of Environmental Studies, Vol. 23 No. 6, pp. 23652369.Google Scholar