Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T19:50:57.495Z Has data issue: false hasContentIssue false

Behavioral biology of trace fossils

Published online by Cambridge University Press:  08 February 2016

Roy E. Plotnick*
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607. E-mail: plotnick@uic.edu

Abstract

The potential of the ichnofossil record for exploring the evolution of behavior has never been fully realized. Some of this is due to the nature of the trace fossil record itself. Equally responsible is the separation of ichnology from the relevant areas of modern behavioral biology. The two disciplines have virtually no concepts, methods, or literature in common. The study of animal behavior and its evolution is thus bereft of the rich data and insights of ichnologists.

One potential pathway forward is for ichnologists to adopt and adapt the movement ecology paradigm proposed several years ago by Ran Nathan and colleagues. This approach views movement as resulting from interactions of the organism's internal state, its movement abilities, and its sensory capabilities with each other and with the external environment. These interactions produce a movement path. The adoption of this paradigm would place trace fossil studies in a far wider common context for the study of movement, while providing the dimension of the evolution of movement behavior in deep time to neontological studies.

A second component of this integration would be for paleontologists to develop a taphonomy of behavior that places in a phylogenetic context the range of possible behaviors that organisms can carry out and assesses the potential of each of these behaviors in leaving a diagnostic trace. Parallel to other taphonomic concepts, this approach assesses the preservation potential of particular behaviors; behavioral fidelity is the extent to which trace fossils preserve these original behavioral signals.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alcock, J. 2009. Animal behavior: an evolutionary approach Sinauer, Sunderland, Mass.Google Scholar
Bastardie, F., Capowiez, Y., Renault, P., and Cluzeau, D. 2005. A radio-labelled study of earthworm behaviour in artificial soil cores in term of ecological types. Biology and Fertility of Soils 41:320327.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Kidwell, S. M. 1985. Taphonomy's contributions to paleobiology. Paleobiology 11:105119.Google Scholar
Behrensmeyer, A. K., Kidwell, S. M., and Gastaldo, R. A. 2000. Taphonomy and paleobiology. Paleobiology 26:103147.CrossRefGoogle Scholar
Benhamou, S. 2004. How to reliably estimate the tortuosity of an animal's path: straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology 229:209220.CrossRefGoogle ScholarPubMed
Bengtson, S., and Rasmussen, B. 2009. Paleontology: new and ancient trace makers. Science 323:346347.CrossRefGoogle ScholarPubMed
Benton, M. J. 2010. Studying function and behavior in the fossil record. PLoS Biology 8:e1000321.CrossRefGoogle ScholarPubMed
Bernardi, M., and Avanzini, M. 2011. Locomotor behavior in early reptiles: insights from an unusual Erpetopus trackway. Journal of Paleontology 85:925929.CrossRefGoogle Scholar
Bertling, M., Braddy, S., Bromley, R., Demathieu, G., Genise, J., Mikulas, R., Nielsen, J., Nielsen, K., Rindsberg, A., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia 39:265286.CrossRefGoogle Scholar
Bolhuis, J. J., and Giraldeau, L. A., eds. 2005. The behavior of animals. Blackwell, Malden, Mass.Google Scholar
Boucot, A. J. 1990. Evolutionary paleobiology of behavior and coevolution. Elsevier, Amsterdam.Google Scholar
Boucot, A. J., and Poinar, G. O. Jr. 2010. Fossil behavior compendium. CRC Press, Boca Raton, Fla.CrossRefGoogle Scholar
Braddy, S. J. 2001. Trackways: arthropod locomotion. Pp. 389393inBriggs, D. E. G. and Crowther, P. R., eds. Palaeobiology II. Blackwell, Oxford.CrossRefGoogle Scholar
Bromley, R. G. 1996. Trace fossils: biology, taphonomy, and applications. Chapman and Hall, London.CrossRefGoogle Scholar
Buatois, L. A., and Mangano, G. M. 2011. Ichnology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Bryant, H. N., and Russell, A. P. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337:405418.Google Scholar
Carrano, M. T., and Wilson, J. A. 2001. Taxon distributions and the tetrapod track record. Paleobiology 27:564582.2.0.CO;2>CrossRefGoogle Scholar
Christy, J. H. 1982. Burrow structure and use in the sand fiddler crab, Uca pugilator (Bosc). Animal Behaviour 30(AUG):687694.CrossRefGoogle Scholar
Christy, J. H. 1987. Competitive mating, mate choice and mating associations of brachyuran crabs. Bulletin of Marine Science 41:177191.Google Scholar
Crimes, T. P. 1974. Colonization of the early ocean floor. Nature 248:328330.CrossRefGoogle Scholar
Crimes, T. P. 1977. Modular construction of deep-water trace fossils from the Cretaceous of Spain. Journal of Paleontology 51:591605.Google Scholar
Crimes, T. P. 1992. The record of trace fossils across the Proterozoic-Cambrian boundary. Pp. 177204inLipps, J. H. and Signor, P. W.eds. Origin and early evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Crimes, T. P., and Droser, M. L. 1992. Trace fossils and bioturbation: the other fossil record. Annual Review of Ecology and Systematics 23:339360.CrossRefGoogle Scholar
Crimes, T. P., and Fedonkin, M. A. 1994. Evolution and dispersal of deep-sea traces. Palaios 9:7483.CrossRefGoogle Scholar
Curran, H. A., and Martin, A. J. 2003. Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology 192:229245.CrossRefGoogle Scholar
Damschen, E. I., Brudvig, L. A., Haddad, N. M., Levey, D. J., Orrock, J. L., and Tewksbury, J. J. 2008. The movement ecology and dynamics of plant communities in fragmented landscapes. Proceedings of the National Academy of Sciences USA 105:1907819083.CrossRefGoogle ScholarPubMed
Davis, R. B., Minter, N. J., and Braddy, S. J. 2007. The neoichnology of terrestrial arthropods. Palaeogeography, Palaeoclimatology, Palaeoecology 255:284307.CrossRefGoogle Scholar
de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A., and van de Koppel, J. 2011. Lévy Walks evolve through interaction between movement and environmental complexity. Science 332:15511553.CrossRefGoogle ScholarPubMed
Dietl, G. P., and Kelley, P. H. 2002. The fossil record of predator-prey arms races: coevolution and escalation hypotheses. InKowalewski, M. and Kelley, P. H., eds. The fossil record of predation. Paleontological Society Special Paper 8:353374.CrossRefGoogle Scholar
Drickamer, L. C., Vessey, S. H., and Jakob, E. 2001. Animal behavior: concepts, processes, and methods. Wadsworth, Belmont, Calif.Google Scholar
Dukas, R. 2009. Learning mechanisms, ecology, and evolution. Pp. 726inDukas, R. and Ratcliffe, J. M., eds. Cognitive ecology II. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Dusenbery, D. B. 1992. Sensory ecology: how organisms acquire and respond to information. W. H. Freeman, New York.Google Scholar
Ekdale, A. A., and De Gibert, J. M. 2010. Paleoethologic significance of bioglyphs: fingerprints of the subterraneans. Palaios 25:540545.CrossRefGoogle Scholar
Ekdale, A. A., and Lamond, R. E. 2003. Behavioral cladistics of trace fossils: evolution of derived trace-making skills. Palaeogeography, Palaeoclimatology, Palaeoecology 192:335343.CrossRefGoogle Scholar
Ekdale, A. A., Bromley, R. G., and Pemberton, S. G. 1984. Ichnology: trace fossils in sedimentology and stratigraphy. Society of Economic Paleontologists and Mineralogists, Tulsa, Okla.CrossRefGoogle Scholar
Farlow, J. O., Gatesy, S. M., Holtz, T. R. J., Hutchinson, J. R., and Robinson, J. M. 2000. Theropod locomotion. American Zoologist 40:640663.Google Scholar
Finarelli, J. A., and Flynn, J. J. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology 55:301313.CrossRefGoogle ScholarPubMed
Floreano, D., and Keller, L. 2010. Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biology 8(1):e1000292.CrossRefGoogle ScholarPubMed
Frey, R. W. 1973. Concepts in the study of biogenic sedimentary structures. Journal of Sedimentary Research 43:619.Google Scholar
Frey, R. W., and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia 13:183207.CrossRefGoogle Scholar
Frey, R. W., Curran, H. A., and Pemberton, S. G. 1984. Tracemaking activities of crabs and their environmental significance: the ichnogenus Psilonichnus. Journal of Paleontology 58:333350.Google Scholar
Gingras, M. K., Dashtgard, S. E., MacEachern, J. A., and Pemberton, S. G. 2008a. Biology of shallow marine ichnology: a modern perspective. Aquatic Biology 2:255268.CrossRefGoogle Scholar
Gingras, M. K., Pemberton, S. G., Dashtgard, S., and Dafoe, L. 2008b. How fast do marine invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology 270:280286.CrossRefGoogle Scholar
Goldberg, E. E., and Igic, B. 2008. On phylogenetic tests of irreversible evolution. Evolution 62:27272741.CrossRefGoogle ScholarPubMed
Hagadorn, J. W., Schellenberg, S. A., and Bottjer, D. J. 2000. Paleoecology of a large Early Cambrian bioturbator. Lethaia 33:142156.CrossRefGoogle Scholar
Halfen, A. F., and Hasiotis, S. T. 2010. Neoichnological study of the traces and burrowing behaviors of the western harvester ant Pogonomyrmex occidentalis (Insecta: Hymenoptera: Formicidae): paleopedogenic and paleoecological implications. Palaios 25:703720.CrossRefGoogle Scholar
Hammer, Ø. 1998. Computer simulation of the evolution of foraging strategies: application to the ichnological record. Palaeontologia Electronica 1(2):21.Google Scholar
Harvey, P. H., and Nee, S. 1997. The phylogenetic foundations of behavioural ecology. Pp. 333349inKrebs, J. R. and Davies, N. B., eds. Behavioural ecology: an evolutionary approach. Blackwell, Malden, Mass.Google Scholar
Hasiotis, S. T. 2002. Continental trace fossils. SEPM Short Course Notes 51:1132.Google Scholar
Hasiotis, S. T., and Mitchell, C. E. 1993. A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo-, and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291314.CrossRefGoogle Scholar
Hastings, A., Byers, J. E., Crooks, J. A., Cuddington, K., Jones, C. G., Lambrinos, J. G., Talley, T. S., and Wilson, W. G. 2007. Ecosystem engineering in space and time. Ecology Letters 10:153164.CrossRefGoogle ScholarPubMed
Hayes, B. 2003. In search of the optimal scumsucking bottomfeeder. American Scientist 91:392397.CrossRefGoogle Scholar
Hembree, D. I. 2009. Neoichnology of burrowing millipedes: linking modern burrow morphology, organism behavior, and sediment properties to interpret continental ichnofossils. Palaios 24:425439.CrossRefGoogle Scholar
Hembree, D. I. 2010. Aestivation in the fossil record: evidence from ichnology. Pp. 245262inNavas, C. A. and Carvalho, J. E., eds. Aestivation: molecular and physiological aspects. Springer, Berlin.CrossRefGoogle Scholar
Hembree, D. I., and Hasiotis, S. T. 2006. The identification and interpretation of reptile ichnofossils in paleosols through modern studies. Journal of Sedimentary Research 76:575588.CrossRefGoogle Scholar
Hofmann, H. J. 1990. Computer simulation of trace fossils with random patterns, and the use of goniograms. Ichnos 1:1522.CrossRefGoogle Scholar
Huntingford, F. A. 2003. A history of Animal Behaviour by a partial, ignorant and prejudiced ethologist. Animal Behaviour 66:409415.CrossRefGoogle Scholar
Huntley, J. W., and Kowalewski, M. 2007. Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proceedings National Academy of Sciences USA 104:1500615010.CrossRefGoogle ScholarPubMed
Isles, T. E. 2009. The socio-sexual behaviour of extant archosaurs: implications for understanding dinosaur behaviour. Historical Biology 21:139214.CrossRefGoogle Scholar
Jackson, S. J., Whyte, M. A., and Romano, M. 2009. Laboratory-controlled simulations of dinosaur footprints in sand: a key to understanding vertebrate track formation and preservation. Palaios 24:222238.CrossRefGoogle Scholar
Jensen, S. R., Droser, M. L., and Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology 220:1929.CrossRefGoogle Scholar
Kitchell, J. A. 1979. Deep-sea foraging pathways: an analysis of randomness and resource exploitation. Paleobiology 5:107125.CrossRefGoogle Scholar
Kitchell, J. A. 1986. The evolution of predator-prey behavior: naticid gastropods and their molluscan prey. Pp. 88112inNitecki, M. H. and Kitchell, J. A., eds. Evolution of animal behavior. Oxford University Press, New York.Google Scholar
Kitchell, J. A., Boggs, C. H., Kitchell, J. F., and Rice, J. A. 1981. Prey selection by naticid gastropods: experimental tests and application to the fossil record. Paleobiology 7:533552.CrossRefGoogle Scholar
Koy, K., and Plotnick, R. E. 2007. Theoretical and experimental ichnology of mobile foraging. Pp. 427440in Miller 2007a.Google Scholar
Koy, K., and Plotnick, R. E. 2010. Ichnofossil morphology as a response to resource distribution: insights from modern invertebrate foraging. Palaeogeography, Palaeoclimatology, Palaeoecology 292:272281.CrossRefGoogle Scholar
Krebs, J. R., and Davies, N. B. 1997. The evolution of behavioural ecology. Pp. 312inKrebs, J. R. and Davies, N. B., eds. Behavioural ecology: an evolutionary approach. Blackwell, Malden, Mass.Google Scholar
Kumagai, C. J., and Farlow, J. O. 2010. Observations on the traces of the American crocodile (Crocodylus acutus) from northwestern Costa Rica. New Mexico Museum of Natural History and Science Bulletin 51:4149.Google Scholar
Labandeira, C. C. 2007. Assessing the fossil record of plant-insect associations: ichnodata versus body-fossil data. Pp. 926inBromley, R. G., Buatois, L. A., Mangano, G., Genise, J. F., and Melchor, R. N., eds. Sediment-organism interactions: a multifaceted ichnology. SEPM (Society for Sedimentary Geology), Tulsa, Okla.Google Scholar
Lauder, G. V. 1986. Homology, analogy, and the evolution of behavior. Pp. 940inNitecki, M. H. and Kitchell, J. A., eds. Evolution of animal behavior. Oxford University Press, New York.Google Scholar
Leighton, L. R. 2002. Inferring predation intensity in the marine fossil record. Paleobiology 28:328342.2.0.CO;2>CrossRefGoogle Scholar
Lockley, M. 1991. Tracking dinosaurs. Cambridge University Press, Cambridge.Google Scholar
Lockley, M. G., and Gillette, D. D. 1989. Dinosaur tracks and traces: an overview. Pp. 310inGillette, D. D., and Lockley, M. G., eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Lorenz, K. 1981. The foundations of ethology. Springer, New York.CrossRefGoogle Scholar
Martin, A. J., and Rindsberg, A. K. 2006. Cubichnia revisited; when “resting” is more than just “resting.”. Geological Society of America Abstracts with Programs 38:476.Google Scholar
Martin, A. J., and Rindsberg, A. K. 2007. Arthropod tracemakers of Nereites? Neoichnological observations of juvenile limulids and their paleoichnological applications. Pp. 478491in Miller 2007a.Google Scholar
Mayr, E. 1974. Behavior programs and evolutionary strategies. American Scientist 62:650659.Google ScholarPubMed
Milàn, J., and Bromley, R. G. 2006. True tracks, undertracks and eroded tracks, experimental work with tetrapod tracks in laboratory and field. Palaeogeography, Palaeoclimatology, Palaeoecology 231:253264.CrossRefGoogle Scholar
Miller, M. F., and Curran, H. A. 2001. Behavioral plasticity of modern and Cenozoic burrowing thalassinidean shrimp. Palaeogeography, Palaeoclimatology, Palaeoecology 166:219236.CrossRefGoogle Scholar
Miller, W. III, ed. 2007a. Trace fossils. Elsevier, Amsterdam.Google Scholar
Miller, W. III, ed. 2007b. Introduction: a user's guide. Pp. xiiixvin Miller 2007a.Google Scholar
Miller, W. III, ed. 2007c. Complex trace fossils. Pp. 458465in Miller 2007a.CrossRefGoogle Scholar
Minter, N. J., and Braddy, S. J. 2006. Walking and jumping with Palaeozoic apterygote insects. Palaeontology 49:827835.CrossRefGoogle Scholar
Motani, R. 2005. Evolution of fish-shaped reptiles (Reptilia: Ichthyopterygia) in their physical environments and constraints. Annual Review of Earth and Planetary Sciences 33:395420.CrossRefGoogle Scholar
Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., and Smouse, P. E. 2008. A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences USA 105:1905219059.CrossRefGoogle ScholarPubMed
Niedzwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M., and Ahlberg, P. E. 2009. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:4348.CrossRefGoogle Scholar
Norell, M. A., Clark, J. M., Chiappe, L. M., and Dashzeveg, D. 1995. A nesting dinosaur. Nature 378:774776.CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273294.CrossRefGoogle Scholar
O'Brien, L. J., Braddy, S. J., and Radley, J. D. 2009. A new arthropod resting trace and associated suite of trace fossils from the Lower Jurassic of Warwickshire, England. Palaeontology 52:10981112.Google Scholar
Olsen, P. E., and Baird, D. 1986. The ichnogenus Atreipus and its significance for Triassic biostratigraphy. Pp. 6187inPadian, K., ed. The beginning of the age of dinosaurs: faunal change across the Triassic-Jurassic boundary. Cambridge University Press, New York.Google Scholar
Orr, P. J. 2001. Colonization of the deep-marine environment during the early Phanerozoic: the ichnofaunal record. Geological Journal 36:265278.CrossRefGoogle Scholar
Papentin, F., and Röder, H. 1975. Feeding patterns: the evolution of a problem and a problem of evolution. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1975:184191.Google Scholar
Plotnick, R. E. 2007. Chemoreception, odor landscapes, and foraging in ancient marine landscapes. Palaeontologia Electronica 10.Google Scholar
Plotnick, R., and Baumiller, T. 2000. Invention by evolution: functional analysis in paleobiology. InErwin, D. H. and Wing, S. L., eds. Deep time: Paleobiology's perspective. Paleobiology 26(Suppl. to No. 4):305323.Google Scholar
Poschmann, M., and Braddy, S. 2010. Eurypterid trackways from Early Devonian tidal facies of Alken an der Mosel (Rheinisches Schiefergebirge, Germany). Palaeobiodiversity and Palaeoenvironments 90:111124.CrossRefGoogle Scholar
Raup, D. M., and Seilacher, A. 1969. Fossil foraging behavior: computer simulation. Science 166:994995.CrossRefGoogle ScholarPubMed
Reichman, O. J., and Seabloom, E. W. 2002. The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology and Evolution 17:4449.CrossRefGoogle Scholar
Richter, R. 1928. Psychische Reaktionen fossiler Tiere,. Helminthoiden und Nereiten als Fragen der Fährtenkunde an die Tierpsychologie. Palaeobiologica 1:225244.Google Scholar
Roopnarine, P., and Beussink, A. 1999. Extinction and naticid predation of the bivalve Chione Von Mühlfeld in the late Neogene of Florida. Palaeontologia Electronica 2.CrossRefGoogle Scholar
Ryan, M. J. 2005. Evolution of behavior. Pp. 294314inBolhuis, J. J. and Giraldeau, L. A., eds. The behavior of animals. Blackwell, Malden, Mass.Google Scholar
Sansom, R. S., Gabbott, S. E., and Purnell, M. A. 2010. Non-random decay of chordate characters causes bias in fossil interpretation. Nature 463:797800.CrossRefGoogle ScholarPubMed
Savazzi, E. 1994. Functional morphology of boring and burrowing invertebrates. Pp. 4382inDonovan, S. K., ed. The paleobiology of trace fossils. Johns Hopkins University Press, Baltimore.Google Scholar
Savrda, C. E. 2007. Taphonomy of trace fossils. Pp. 92109in Miller 2007a.CrossRefGoogle Scholar
Schäfer, W. 1972. Ecology and palaeoecology of marine environments. University of Chicago Press, Chicago.Google Scholar
Schick, R. S., Loarie, S. R., Colchero, F., Best, B. D., Boustany, A., Conde, D. A., Halpin, P. N., Joppa, L. N., McClellan, C. M., and Clark, J. S. 2008. Understanding movement data and movement processes: current and emerging directions. Ecology Letters 11:13381350.CrossRefGoogle ScholarPubMed
Seilacher, A. 1953. Studien zur Palichnologie. I. Uber die Methoden der Palichnologie. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 96:421452.Google Scholar
Seilacher, A. 1964. Sedimentological classification and nomenclature of trace fossils. Sedimentology 3:253256.Google Scholar
Seilacher, A. 1967. Fossil behavior. Scientific American 217:7280.CrossRefGoogle Scholar
Seilacher, A. 1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1974:233245.Google Scholar
Seilacher, A. 1977. Evolution of trace fossil communities. Pp. 359376inHallam, A., ed. Patterns of evolution. Elsevier, Amsterdam.Google Scholar
Seilacher, A. 1986. Evolution of behavior as expressed in marine trace fossils. Pp. 6287inNitecki, M. H. and Kitchell, J. A., eds. Evolution of animal behavior. Oxford University Press, New York.Google Scholar
Seilacher, A. 2007. Trace fossil analysis. Springer, Berlin.Google Scholar
Seilacher, A., Buatois, L. A., and Mangano, M. G. 2005. Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227:323356.CrossRefGoogle Scholar
Sellers, W. I., Manning, P. L., Lyson, T., Stevens, K., and Margetts, L. 2009. Virtual palaeontology: gait reconstruction of extinct vertebrates using high performance computing. Palaeontologia Electronica 12(3).Google Scholar
Tinbergen, N. 1963. On aims and methods of ethology. Zeitschrift für Tierpsychologie 20:410433.CrossRefGoogle Scholar
Tschinkel, W. R. 2003. Subterranean ant nests: trace fossils past and future? Palaeogeography, Palaeoclimatology, Palaeoecology 192:321333.CrossRefGoogle Scholar
Turchin, P. 1998. Quantitative analysis of movement. Sinauer, Sunderland, Mass.Google Scholar
Uchman, A. 2004. Phanerozoic history of deep-sea trace fossils. Pp. 125140inMcIroy, D., ed. The application of ichnology to paleoenvironmental and stratigraphic analyses. Geological Society, London.Google Scholar
Vannier, J., Calandra, I., Gaillard, C., and Zylinska, A. 2010. Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology 38 711–4..CrossRefGoogle Scholar
Walker, S. E. 2007. Traces of gastropod predation on molluscan prey in tropical reef environments. Pp. 324344in Miller 2007a.Google Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. Pp. 1933inThomason, J. J., ed. Functional morphology in vertebrate paleontology.Google Scholar