Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T18:22:15.544Z Has data issue: false hasContentIssue false

X-Ray and Raman Studies of Interlayer Mixing in SimGem Superlattices

Published online by Cambridge University Press:  22 February 2011

R. C. Bowman Jr
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
P. M. Adams
Affiliation:
The Aerospace Corporation, P. O. Box 92957, Los Angeles, CA 90009
S. J. Chang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
V. Arbet-Engels
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
K. L. Wang
Affiliation:
Device Research Laboratory, Electrical Engineering Department, University of California, Los Angeles, CA 90024
Get access

Abstract

Interface mixing between the Ge and Si layers in symmetrically strained SimGem superlattices occurs during post growth thermal anneals. Interdiffusion coefficients were obtained from intensity changes in the low angle superlattice x-ray satellites on samples with nominal periodicities between 1.4nm and 5.6nm. A common activation energy of 3.0±0.1 eV was found. The bulk interdiffusion coefficients for SimGem were derived since measurements were made on samples with different layer thicknesses. Intermixing appears to occur by diffusion of Si atoms into the Ge layers via a vacancy mechanism. Raman scattering measurements support this process as well as the formation of Si1−xGex, alloy layers during the anneals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kasper, E., Kibbel, H., Jorke, H., Brugger, H., Friess, E., and AbStreiter, G., Phys. Rev. B 38, 3599 (1988).Google Scholar
2. Abstreiter, G., Eberl, K., Friess, E., Wegscheider, W., and Zachal, R., J. Cryst. Growth 95, 431 (1989).Google Scholar
3. Kasper, E., Kibbel, H., and Presting, H., Thin Solid Films 183, 87 (1989).Google Scholar
4. Chang, S. J., Huang, C. F., Kallel, M. A., Wang, K. L., Bowman, R. C. Jr, and Adams, P. M., Appl. Phys. Lett. 53, 1835 (1988).Google Scholar
5. Bowman, R. C. Jr, Adams, P. M., Ahn, C. C., Chang, S. J., Arbet, V., and Wang, K. L., Mat. Res. Soc. Symp. Proc. 160, 101 (1990).CrossRefGoogle Scholar
6. Chang, S. J., Wang, K. L., Bowman, R. C. Jr, and Adams, P. M., Appl. Phys. Lett. 54, 1253 (1989).CrossRefGoogle Scholar
7. Bowman, R. C. Jr, Adams, P. M., Chang, S. J., Arbet, V., and Wang, K.L., Mat. Res. Soc. Symp. Proc. 148, 347 (1989).Google Scholar
8. Chang, S. J., Arbet, V., Wang, K. L., Bowman, R. C. Jr, Adams, P. M., Nayak, D., and Woo, J. C. S., J. Elect. Mater. 19, 125 (1990).Google Scholar
9. Greer, A. L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, New York, 1985). p. 419.CrossRefGoogle Scholar
10. Jesson, D. E., Pennycook, S. J., and Baribeau, J. M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
11. McVay, G. L. and DuCharme, A. R., Phys. Rev. B 9, 627 (1974).Google Scholar
12. Räisänen, J., Hirvonen, J., and Anttila, A., Solid-State Elect. 24, 333 (1981).CrossRefGoogle Scholar
13. Vogel, G., Hettich, G., and Mehrer, H., J. Phys. C 16, 6197 (1983).CrossRefGoogle Scholar
14. Demond, F. J., Kalbitzer, S., Mannsperger, H. and Damjantschitsch, H., Phys. Lett. A 93, 503 (1983).Google Scholar
15. Bean, J. C., Fiory, A. T., Hull, R., and Lynch, R.T., in Proc. First Symp. on Silicon Molecular Beam Epitaxy, edited by Bean, J. C. (Electrochemical Society, Pennington, NJ, 1985) p. 385.Google Scholar
16. Borg, R. J. and Dienes, G. J., An Introduction to Solid State Diffusion, (Academic, Boston, 1988) pp. 195200.Google Scholar