Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:13:19.729Z Has data issue: false hasContentIssue false

Visible Photoluminescence from SI1-xGEx Quantum Wells

Published online by Cambridge University Press:  25 February 2011

T.W. Steiner
Affiliation:
Simon Fraser University, Physics Department, Burnaby, British Columbia, Canada
L.C. Lenchyshyn
Affiliation:
Simon Fraser University, Physics Department, Burnaby, British Columbia, Canada
M.L.W. Thewalt
Affiliation:
Simon Fraser University, Physics Department, Burnaby, British Columbia, Canada
D.C. Houghton
Affiliation:
National Research Council Canada, Ottawa, Ontario, Canada
J.-P. Noël
Affiliation:
National Research Council Canada, Ottawa, Ontario, Canada
N.L. Rowell
Affiliation:
National Research Council Canada, Ottawa, Ontario, Canada
J.C. Sturm
Affiliation:
Princeton University, Electrical Engineering Department, Princeton, NJ
X. Xiao
Affiliation:
Princeton University, Electrical Engineering Department, Princeton, NJ
Get access

Abstract

We have observed photoluminescence from strained SiGe quantum well layers at energies approximately equal to twice the SiGe band-gap energy. This luminescence is caused by the simultaneous recombination of two electron hole pairs yielding a single photon. Detection of luminescence at twice the band-gap has been previously used in Si to observe luminescence originating from electron-hole droplets, biexcitons, bound multiexciton complexes and polyexcitons. Time resolved spectra at twice the band-gap have been obtained from our SiGe samples prepared by molecular beam epitaxy (MIRE) as well as rapid thermal chemical vapor deposition (RTCVD). This new luminescence clearly distinguishes multiexciton or dense e-h plasma processes from single exciton processes such as bound excitons, free excitons or localized excitons, which are difficult to separate in the usual nearinfrared luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Terashima, K., Tajima, M., and Tatsumi, T., Appl. Phys. Lett. 57, 1925 (1990)CrossRefGoogle Scholar
2. Sturm, J.C, Manoharan, H., Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Noël, J.-P., and Houghton, D.C., Phys. Rev. Lett. 66, 1362 (1991).CrossRefGoogle Scholar
3. Robbins, D.J., Canham, L.T., Barnett, S.J., Pitt, A.D., and Calcott, P., J. Appl. Phys. 71, 1407, (1992).Google Scholar
4. Arbet-Engels, V., Tijero, J.M.G., Manissadjian, A., Wang, K.L., and Higgs, V., Appl. Phys. Lett., 61, 2586 (1992).Google Scholar
5. Usami, N., Fukatsu, S., and Shiraki, Y., Appl. Phys. Lett. 61, 1706 (1992).Google Scholar
6. Noël, J.-P., Rowell, N.L., Houghton, D.C., Wang, A., and Perovic, D.D., Appl. Phys. Lett. 61, 690 (1992).CrossRefGoogle Scholar
7. Steiner, T.D., Hengehold, R.L., Yeo, Y.K., Godbey, D.J., Thompson, P.E., and Pomrenke, G.S., J. Vac. Sci. Technol. B10, 924 (1992).Google Scholar
8. Glaser, E.R., Kennedy, T.A., Godbey, D.J., Thompson, P.E., Wang, K.L., and Chern, C.H., Phys. Rev. B47, 1305 (1993)..Google Scholar
9. Spitzer, J., Thonke, K., Sauer, R., Kibbel, H., Herzog, H.-J., and Kasper, E., Appl. Phys. Lett. 60, 1729 (1992).Google Scholar
10. Schmid, W., Phys. Rev. Lett. 45, 1726, (1980)Google Scholar
11. Thewalt, M.L.W. and McMullan, W. G., Phys. Rev. B30, 6232, (1984)CrossRefGoogle Scholar
12. Sturm, J.C., Schwartz, P.V., Prinz, E.J., and Manoharan, H., J. Vac. Sci. Technol. B9, 2011 (1991).CrossRefGoogle Scholar
13. McMullan, W.G., Charbonneau, S. and Thewalt, M.L.W., Rev. Sci. Instrum. 58, 1626 (1987)Google Scholar