Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T21:20:56.200Z Has data issue: false hasContentIssue false

Vanadium Oxide Nanofibers and Vanadium Oxide Polyaniline Nanocomposite: Preparation, Characterization and Electrochemical Behavior

Published online by Cambridge University Press:  01 February 2011

Samuel T. Lutta
Affiliation:
Chemistry Department and the Institute for Materials Research, State University of NewYork at Binghamton, Binghamton, NewYork 13902–6016, U.S.A.
Hong Dong
Affiliation:
Chemistry Department and the Institute for Materials Research, State University of NewYork at Binghamton, Binghamton, NewYork 13902–6016, U.S.A.
Peter Y. Zavalij
Affiliation:
Chemistry Department and the Institute for Materials Research, State University of NewYork at Binghamton, Binghamton, NewYork 13902–6016, U.S.A.
M. Stanley Whittingham*
Affiliation:
Chemistry Department and the Institute for Materials Research, State University of NewYork at Binghamton, Binghamton, NewYork 13902–6016, U.S.A.
*
1 Contact author; stanwhit@binghamton.edu
Get access

Abstract

The sol gel reaction of NH4VO3 and polymethylmethacrylate (PMMA) template followed by hydrothermal treatment formed (NH4)xV2O5-Δ.nH2O rods. TGA, SEM, XRD and FTIR characterized this compound. Heating (NH4)xV2O5-Δ.nH2O in oxygen and nitrogen at 250 °C and 300 °C respectively resulted in the formation of vanadium oxides nanofibers of V3O7 and V2O5. Performance of these compounds as cathode in rechargeable lithium battery was investigated in a LiPF6/mixed carbonate electrolyte. The materials show good cycling with capacity greater than 130mAh/g, which translates to the insertion of 0.5 moles of Li+ per vanadium of the active material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. lijima, S., Nature. 56, 354, (1991)Google Scholar
2. Rao, C. N. R., Cheetham, A. K., J. Mater. Chem. 11, 2887 (2001)Google Scholar
3. Whittingham, M. S., J. Electrochem. Soc. 123, 315 (1976)Google Scholar
4. Centi, G., Trifiro, F., Appl. Catal. 3. A143 (1996)Google Scholar
5. Ueda, Y., Chem. Mater. 10, 2653 (1998)Google Scholar
6. Ajayan, P. M., Stephen, O., Redlich, P., Colliex, C., Nature. 375, 564 (1995)Google Scholar
7. Patrissi, C. J., Martin, C. R., J. Electrochem. Soc. 148, A1247 (2001).Google Scholar
8. Gu, G., Schmid, M., Chiu, P., Minett, A., Fraysse, J., Kim, G., Roth, S., Kozlov, M., Muñoz, E., Baughman, R. H., Nature Materials. 2, 316, (2003)Google Scholar
9. Krumeich, F., Muhr, H.J., Niderberger, M., Bieri, F., Schnyder, B., and Nesper, R., J. Am. Chem. Soc. 121, 8324 (1999)Google Scholar
10. Lutta, S., Dong, H., Zavalij, P.Y. and Whittingham, M.S., Mater. Res. Soc. Proc. 740, 110 (2003)Google Scholar
11. Billmeyer, F. W., A textbook of polymer chemistry. Interscience publishers, NY, 1957.Google Scholar
12. MacDiarmid, A. G., Jones, W.E. Jr, Norris, I. D., Gao, J., Johnson, A.T. Jr, Pinto, N.J., Hone, J., Han, B., Ko, F.K., Okuzaki, h. and Liaguno, M., Synthetic Metals. 119, 27(2001)Google Scholar
13. Ngala, K., Schutle, J., Zavalij, P.Y., and Whittingham, M.S., To be published.Google Scholar
14. Yao, T., Oka, Y., Yamoto, N., Mater. Res. Bull. 27, 669 (1992)Google Scholar
15. Zhang, F., Zavalij, P.Y. and Whittingham, M.S., Mater. Res. Bull. 32, 701(1997)Google Scholar
16. Bystrom, A., Wilhelmi, K. A., and Brotzen, O., Acta Chem. Scand. 1119 (1950)Google Scholar
17. Waltersson, K., Foslund, B., and Wilhelmi, K. A., Acta Cryst. B30, 2644 (1974)Google Scholar
18. Delmas, C., Auradou, H. C., Cocciantelli, J., Menetrier, M., and Doumerc, J., Solid State Ionics. 69, 257 (1994)Google Scholar