Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T23:26:08.835Z Has data issue: false hasContentIssue false

The Use of Curium as a Rare Earth Substitute in High Tc‐Related Compounds

Published online by Cambridge University Press:  28 February 2011

L Soderholm
Affiliation:
Chemistry and Materials Sciences Divisions, Argonne National Laboratory, Argonne, IL 60439, USA.
C.W. Williams
Affiliation:
Chemistry and Materials Sciences Divisions, Argonne National Laboratory, Argonne, IL 60439, USA.
U. Welp
Affiliation:
Chemistry and Materials Sciences Divisions, Argonne National Laboratory, Argonne, IL 60439, USA.
Get access

Abstract

We report the synthesis of Cm2CuO4. The lattice constants of this material, determined by x‐ray diffraction, show it to be a new member of the isostructural series R2CuO4 (R=Pr, Nd, Sm, Eu, and Gd). Analysis of magnetic measurements is consistent with a free‐ion effective moment for Cm3+, with no contribution to the susceptibility from Cu‐ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Soderholm, L, Loong, C.‐K., Goodman, G.L, Welp, U., Bolender, J., and Williams, C.W., Physica B (in press).Google Scholar
2 Soderholm, L., Goodman, G.L., Loong, C.‐K., and Dabrowski, B., Phys. Rev. B. (submitted).Google Scholar
3 Goodman, G.L. and Soderholm, L., to be published.Google Scholar
4 Peng, J.L., Klavins, P., Shelton, R.N., Radousky, H.R., Hahn, P.A., and Bernardez, L., Phys. Rev. B. (in press)Google Scholar
5 Neukirch, U., Simons, C.T., Sladeczek, P., Laubschat, C., Strebel, O., Kaindl, G., and Sarma, D., Europhys. Lett. 56, 567 (1988).Google Scholar
6 Kang, J.S., Allen, J.W., Shen, Z.X., Ellis, W.P., Yeh, J.J., Lee, B.W., Maple, M.B., Spicer, W.E., and Lindau, I., J. Less Common Metals 148, 121 (1989).Google Scholar
7 Takagi, H., Uchida, S., and Tokura, Y., Phys. Rev. Lett. 62, 1197 (1989).Google Scholar
8 Soderholm, L, Goodman, G.L., Welp, U., Williams, C.W., and Bolender, J., Physica C161, 252 (1989).Google Scholar
9 Gering, E., Renker, B., Gompf, F., Ewert, D., Schmidt, H., Agrens, R., Bonnet, M., and Dianoux, A., Physica C153‐155, 184 (1989).Google Scholar
10 Li, W.‐H., Lynn, J. W., Skanthakumar, S., Clinton, T.W., Kebede, A., Jee, C.‐S., Crow, J.E., and Mihasisin, T., Phys. Rev. B40, 5300 (1989).Google Scholar
11 Grande, von B., Muller‐Buschbaum, Hk., and Schweizer, M., Z. anorg. allg. Chem. 428, 120 (1977).Google Scholar
12 Jorgensen, J.D., Schuttler, H.‐B., Hinks, D.G., Capone, D. W., Zhang, K., Brodsky, M.B. and Scalapino, D., Phys. Rev. Lett. 58, 1024 (1987).Google Scholar
13 Soderholm, Land Goodman, G.L., J. Solid State Chem. 81, 121 (1989).Google Scholar
14 Thompson, J.D., Cheong, S.‐W., Brown, S.E., Fisk, Z., Oseroff, S.B., Tovar, M., Vier, D.C., and Schultz, S., Phys. Rev. B39, 6660 (1989), and references therein.Google Scholar