Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T07:41:44.431Z Has data issue: false hasContentIssue false

Unipolar Switching Behavior in Highly Crystalline Hexagonal Boron Nitride

Published online by Cambridge University Press:  22 May 2014

Nikhil Jain
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, 257 Fuller Road, Albany, NY 12203, U.S.A.
Robin B. Jacobs-Gedrim
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, 257 Fuller Road, Albany, NY 12203, U.S.A.
Bin Yu
Affiliation:
College of Nanoscale Science & Engineering, State University of New York, 257 Fuller Road, Albany, NY 12203, U.S.A.
Get access

Abstract

We observed resistive switching in highly crystalline layered insulator hexagonal boron nitride (h-BN) under electric field in a nano-device configuration. Two distinct resistive states were observed in the 2D material heterostack. Electrical characterization using capacitance-voltage approach further revealed the role of h-BN as the active switching element. The switching behavior could be attributed to substitutional doping of h-BN under electric field present in the active region, possibly resulting in the formation of multi-element complex in which electrical conductivity depends on the amount of substituted dopant in the boron nitride crystal lattice. Since switching is observed independent of the direction of electric field, it is unipolar in nature. The observed memristance phenomenon in layered insulator may be potentially used in the form of NVM, providing possible direction to implement information storage or reconfigurable logic applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. a. M. Low-cost and Nanoscale Non-volatile Memory Concept for Future Silicon Chips. Nat Mater 2005, 4, 347352.CrossRefGoogle ScholarPubMed
Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive Switching Mechanism for Metal/oxide/metal Nanodevices. Nat Nano 2008, 3, 429433.CrossRefGoogle ScholarPubMed
Yang, J. J.; Strachan, J. P.; Miao, F.; Zhang, M.-X.; Pickett, M. D.; Yi, W.; Ohlberg, D. A. A.; Medeiros-Ribeiro, G.; Williams, R. S. Metal/TiO2 Interfaces for Memristive Switches. Appl. Phys. A 2011, 102, 785789.CrossRefGoogle Scholar
Szot, K.; Speier, W.; Bihlmayer, G.; Waser, R. Switching the Electrical Resistance of Individual Dislocations in Single-crystalline SrTiO3. Nat Mater 2006, 5, 312320.CrossRefGoogle ScholarPubMed
Chen, A.; Haddad, S.; Wu, Y. C.; Lan, Z.; Fang, T. N.; Kaza, S. Switching Characteristics of Cu2O Metal-insulator-metal Resistive Memory. Applied Physics Letters 2007, 91, 123517–123517–3.CrossRefGoogle Scholar
Waser, R.; Aono, M. Nanoionics-based Resistive Switching Memories. Nat Mater 2007, 6, 833840.CrossRefGoogle ScholarPubMed
Choi, B. J.; Jeong, D. S.; Kim, S. K.; Rohde, C.; Choi, S.; Oh, J. H.; Kim, H.-J.; Hwang, C. S.; Szot, K.; Waser, R. et al. . Resistive Switching Mechanism of TiO2 Thin Films Grown by Atomic-layer Deposition. Journal of Applied Physics 2005, 98, 033715–033715–10.CrossRefGoogle Scholar
Rozenberg, M. J.; Inoue, H.; Sanchez, M. J. Strong Electron Correlation Effects in Nonvolatile Electronic Memory Devices. Applied Physics Letters 2006, 88, 033510–033510–3.CrossRefGoogle Scholar
Fors, R.; Khartsev, S. I.; Grishin, A. M. Giant Resistance Switching in Metal-insulator-manganite Junctions: Evidence for Mott Transition. Phys. Rev. B 2005, 71, 045305.CrossRefGoogle Scholar
Lamb, D. R.; Rundle, P. C. A Non-filamentary Switching Action in Thermally Grown Silicon Dioxide Films. Br. J. Appl. Phys. 1967, 18, 29.CrossRefGoogle Scholar
Standley, B.; Bao, W.; Zhang, H.; Bruck, J.; Lau, C. N.; Bockrath, M. Graphene-Based Atomic-Scale Switches. Nano Lett. 2008, 8, 33453349.CrossRefGoogle ScholarPubMed
Yao, J.; Zhong, L.; Zhang, Z.; He, T.; Jin, Z.; Wheeler, P. J.; Natelson, D.; Tour, J. M. Resistive Switching in Nanogap Systems on SiO2 Substrates. Small 2009, 5, 29102915.CrossRefGoogle ScholarPubMed
Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. . Atomic Layers of Hybridized Boron Nitride and Graphene Domains. Nat Mater 2010, 9, 430435.CrossRefGoogle ScholarPubMed
Alem, N.; Ramasse, Q.; Sarahan, M.; Erni, R.; Yazyev, O.; Erickson, K.; Louie, S.; Zettl, A. Atomic-scale Interaction Dynamics in Few-layer Hexagonal Boron Nitride (h-BN). Microscopy and Microanalysis 2011, 17, 12581259.CrossRefGoogle Scholar
Berseneva, N.; Krasheninnikov, A. V.; Nieminen, R. M. Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Phys. Rev. Lett. 2011, 107, 035501.CrossRefGoogle ScholarPubMed
Murali, R.; Yang, Y.; Brenner, K.; Beck, T.; Meindl, J. D. Breakdown Current Density of Graphene Nanoribbons. Applied Physics Letters 2009, 94, 243114–243114–3.CrossRefGoogle Scholar
Lipp, A.; Schwetz, K. A.; Hunold, K. Hexagonal Boron Nitride: Fabrication, Properties and Applications. Journal of the European Ceramic Society 1989, 5, 39.CrossRefGoogle Scholar
Park, H.; Wadehra, A.; Wilkins, J. W.; Castro Neto, A. H. Magnetic States and Optical Properties of Single-layer Carbon-doped Hexagonal Boron Nitride. Applied Physics Letters 2012, 100, 253115–253115–4.CrossRefGoogle Scholar
Wei, X.; Wang, M.-S.; Bando, Y.; Golberg, D. Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes. ACS Nano 2011, 5, 29162922.CrossRefGoogle ScholarPubMed