Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T08:15:23.805Z Has data issue: false hasContentIssue false

Triboluminescence of Rare-Earth-Doped Aluminosilicates and Its Application to Sensing of Structural Damage

Published online by Cambridge University Press:  15 February 2011

Katsuhisa Tanaka
Affiliation:
Department of Chemistry and Materials Technology, Faculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan, katsu@ipc.kit.ac.jp
Tsuguo Ishihara
Affiliation:
Hyogo Prefectural Institute of Industrial Research, 3-1-12, Suma-ku, Kobe 654-0037, Japan
Koji Fujita
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
Kazuyuki Hirao
Affiliation:
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

Intense triboluminescence has been observed in rare-earth-doped aluminosilicates such as BaAl2Si2O8and SrAl2Si2O8doped with Eu2+, Tb3+, or Dy3+. The triboluminescence is caused by the excitation of and emission from rare-earth ions doped in the crystals. A discrepancy in the wavelength of maximum emission intensity between triboluminescence and photoluminescence spectra is observed for the 4f65d-4f7 transition of Eu2+, whereas the peak positions and the relative intensities of emission lines in triboluminescence and photoluminescence spectra are almost the same as each other for the 4f-4f transitions of Th3+ and Dy3+. This is because the 5d levels, which are more significantly affected by ligand fields than the 4f levels, contribute to the transition of Eu2+. It is thought that the difference in local environment around the Eu2+ between on the fractured surface and within the bulk brings about the discrepancy between triboluminescence and photoluminescence spectra

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

1 Belyaev, L.M. and Martyshev, Yu.N., Phys. Status Solidi 34, 57 (1969).10.1002/pssb.19690340105Google Scholar
2 Sodomka, L., Phys. Status Solidi A 7, K65 (1971).10.1002/pssa.2210070239Google Scholar
3 Zink, J.I., Chem. Phys. Lett. 32, 236 (1975).10.1016/0009-2614(75)85112-8Google Scholar
4 Williams, G.P. Jr., and Turner, T.J., Solid State Commun. 29, 201 (1979).10.1016/0038-1098(79)91038-XGoogle Scholar
5 Chandra, B.P. and Zink, J.I., J. Chem. Phys. 73, 5933 (1980).10.1063/1.440151Google Scholar
6 Zink, J.I., Beese, W. and Schindler, J.W., Appl. Phys. Lett. 40, 112 (1982).10.1063/1.93025Google Scholar
7 Chapman, G.N. and Walton, A.J., J. Appl. Phys. 54, 5961 (1983).10.1063/1.331773Google Scholar
8 Nowak, R., Krajewska, A. and Samoc, M., Chem. Phys. Lett 94, 270 (1983).10.1016/0009-2614(83)87085-7Google Scholar
9 Brady, B.T. and Rowell, G.A., Nature 321, 488 (1986).10.1038/321488a0Google Scholar
10 Nakayama, K., Suzuki, N. and Hashimoto, H., J. Phys. D 25, 303 (1992).10.1088/0022-3727/25/2/027Google Scholar
11 Li, D.G., McAlpine, N.S. and Haneman, D., Surf. Sci. 281, L315 (1993).10.1016/0039-6028(93)90846-CGoogle Scholar
12 Kawaguchi, Y., Jpn. J. Appl. Phys. 37, 1892 (1998).10.1143/JJAP.37.1892Google Scholar
13 Chapman, G.N. and Walton, A.J., J. Phys. C 16, 5543 (1983).10.1088/0022-3719/16/28/021Google Scholar
14 Ishihara, T., Tanaka, K., Hirao, K., and Soga, N., Jpn. J. Appi. Phys. 36, L781 (1997).10.1143/JJAP.36.L781Google Scholar
15 Ishihara, T., Tanaka, K., Fujita, K., Hirao, K. and Soga, N., Solid State Commun. 107, 763 (1998).10.1016/S0038-1098(98)00271-3Google Scholar
16 Akiyama, M., Chao-Nan, Xu, Nonaka, K. and Watanabe, T., Appl. Phys. Lett. 73, 3046 (1998).10.1063/1.122667Google Scholar
17 Arifov, P.A., Sirazhiddinov, N.A. and Grebenshchikov, R.G., Russ. J. Inorg. Chem. 32, 1628 (1987).Google Scholar
18 Yoshiki, B., Kobutsu Kogaku (Mineral Engineering), Gihodo, Tokyo, 1959, p. 644 [in Japanese].Google Scholar
19 Laud, K.R., Gibbons, E.F., YTien, T. and Stadler, H.L., J.Electrochem.Soc. 118, 918 (1971).10.1149/1.2408224Google Scholar
20 Ryan, E.M., ehmann, W.L., Feldman, D.W. and Murphy, J., J.Electrochem.Soc. 121, 1475 (1974).10.1149/1.2401714Google Scholar
21 Nakayama, K., Seidenki-Gakkai-Shi 15, 421 (1991) [in Japanese].Google Scholar