Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T12:17:50.605Z Has data issue: false hasContentIssue false

Transport and Meyer-Neldel Rule in Microcrystalline Silicon Films

Published online by Cambridge University Press:  01 February 2011

Steve Reynolds
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Julich, Germany.
Vlad Smirnov
Affiliation:
School of Computing and Creative Technologies, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, U.K.
Friedhelm Finger
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Julich, Germany.
Charlie Main
Affiliation:
University of Dundee, Division of Electronic Engineering and Physics, Nethergate, Dundee DD1 4HN, U.K.
Reinhard Carius
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Julich, Germany.
Get access

Abstract

Changes in the electrical conductivity of thin (< 300 nm) silicon films following prolonged exposure to atmosphere, are reported. Both reversible (by annealing at 150 °C under vacuum) and irreversible (annealing-resistant) effects are found to occur, which are larger in thinner films. The conductivity prefactor and thermal activation energy obey the Meyer-Neldel rule, although detailed behaviour depends on film thickness and microstructure. Irreversible changes may result from oxidation of thinner, more porous films, with water and/or oxygen adsorption and desorption responsible for reversible changes. The need to identify and account for these effects when discussing and formulating transport mechanisms in these materials is underlined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tanielian, M., Phil. Mag. B 45, 435 (1982).10.1080/01418638208227449Google Scholar
[2] Vepřek, S., Iqbal, Z., Kühne, R.O., Capezzuto, P., Sarott, F A. and Gimzewski, J.K., J. Phys. C: Solid State Phys. 16, 6241 (1983).10.1088/0022-3719/16/32/015Google Scholar
[3] Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S. and Günes, M., IEE Proc. CDS 150, 300 (2003).Google Scholar
[4] Sendova-Vassileva, M., Finger, F., Klein, S. and Lambertz, A., J. Optoelectron. Adv. Mater. 7, 481 (2005).Google Scholar
[5] Smirnov, V., Reynolds, S., Main, C., Finger, F. and Carius, R., J. Non-Cryst. Solids, 338-340, 421 (2004).10.1016/j.jnoncrysol.2004.03.010Google Scholar
[6] Reynolds, S., Smirnov, V., Finger, F., Main, C. and Carius, R., J. Optoelectron. Adv. Mater. 7, 91 (2005).Google Scholar
[7] Goerlitzer, M., Torres, P., Beck, N., Wyrsch, N., Keppner, H., Pohl, J. and Shah, A., J. Non-Cryst. Solids 227-230, 996 (1998).10.1016/S0022-3093(98)00257-9Google Scholar
[8] Meier, J., Dubail, S., Cuperus, J., Kroll, U., Platz, R., Torres, P., Selvan, J.A. Anna, Pernet, P., Beck, N., Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H. and Shah, A., J. Non-Cryst. Solids 227-230, 1250 (1998).10.1016/S0022-3093(98)00352-4Google Scholar
[9] Brüggemann, R., Rojahn, M. and Rösch, M., Phys. Stat. Sol. (a) 166, R11 (1998).10.1002/(SICI)1521-396X(199804)166:2<R11::AID-PSSA999911>3.0.CO;2-H3.0.CO;2-H>Google Scholar
[10] Ram, S., Kumar, S. and Cabarrocas, P. Röca i, Mater. Res. Soc. Symp. Proc. 715, A21.4 (2002).10.1557/PROC-715-A21.4Google Scholar
[11] Irsigler, P., Wagner, D. and Dunstan, D.J, J. Phys. C: Solid State Phys. 16, 6605 (1983).10.1088/0022-3719/16/34/010Google Scholar
[12] Overhof, H. and Thomas, P., Defect and Diffusion Forum 192-193, 1 (2001).10.4028/www.scientific.net/DDF.192-193.1Google Scholar
[13] Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Muck, A., Rech, B. and Wagner, H., Solar Energy Mater. & Solar Cells 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
[14] Tzolov, M., Finger, F., Carius, R. and Hapke, P., J. Appl. Phys. 81, 7376 (1997).10.1063/1.365354Google Scholar
[15] Fritzsche, H., “Electronic Properties of Surfaces in a-Si:H”, Semconductors and Semimetals 21C, ed. Pankove, J.I., (Academic, 1984), ch. 6, p309.Google Scholar
[16] Kocka, J., Fejfar, A., Stuchlikova, H., Stuchlik, J., Fojtik, P., Mates, T., Rezek, B., Luterova, K., Svrcek, V. and Pelant, I., Solar Energy Mater. & Solar Cells 78, 493 (2003).10.1016/S0927-0248(02)00449-XGoogle Scholar