No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Thermal equilibration processes in diode structures of doped hydrogenated amorphous silicon (a-Si:H) have been studied. The fast cooling from above the thermal equilibrium temperature (TE) results in an increase in dark reverse current as well as in forward current. The reverse leakage currrent and the diode quality factor increase with quenching temperature at above TE. It is concluded that the dangling bond density increases upon fast cooling from above TE, even though the amount of the increase is small compared with that for the active dopants. On the other hand, the drift mobility changes little after fast cooling. We propose a new model to explain the experimental results.