Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-17T14:35:41.301Z Has data issue: false hasContentIssue false

Surface Elevation and Strain in Ion Implanted GaN

Published online by Cambridge University Press:  17 March 2011

B. Molnar
Affiliation:
Code 6370, Naval Research Laboratory Washington, DC 20375
S. B. Qadri
Affiliation:
Code 6370, Naval Research Laboratory Washington, DC 20375
R. M. Stroud
Affiliation:
Code 6370, Naval Research Laboratory Washington, DC 20375
C. A. Carosella
Affiliation:
Code 6370, Naval Research Laboratory Washington, DC 20375
Get access

Abstract

We report on the investigation of X-ray strains and surface elevation of ion-implanted GaN as a function of ion fluence. Si, Mg and Ar ion implantation are examined. A continuous increase in lattice constants, a and c occur for doses up to near 1 × 1015/cm2. At higher doses there emerges a volume expansion of the GaN perpendicular to the surface which is an order of magnitude larger than any observed out-of-plane change in strain. The rapid expansion correlates with the onset of GaN amorphization. Transmission electron microscopy indicates that cavities form after 5 × 1016/cm2, 100 keV Ar+ implantation. For low temperature implantation, the cavities lie near the peak of the ion range For room temperature implantation, the cavities coalesce at the surface and push out the GaN perpendicular to the surface. AFM measurements confirm the presence of large bumps on the surface. The very high dose ion implantation have important consequences to etching rates of GaN and to the ability to produce n+, but not p+ doping with ion implantation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Liu, C., Wenzel, A., Volz, K., Rauschenbach, B., Nucl.Instr.and Meth.B 148, 396 (1999)Google Scholar
2. Kucheyev, S.O., Williams, J.T., Jagadish, C., Zou, J., Craig, V.S.J., Li, G., . Phys. Lett. 77, 1455 (2000)Google Scholar
3. Tan, H.H., Williams, J.S., Zou, J., Cockayne, D.J.H., Pearton, S.J., Zolper, J.C. Stall, R.A., .Phys.Lett. 72, 1190 (1996)Google Scholar
4. Kleitman, D. and Yearian, H.J., Phys..Rev 108, 901 (1957)Google Scholar
5. Whan, R.E. Arnold, G.W., Appl.Phys.Lett. 17, 378 (1970)Google Scholar
6. Appleton, B.R., Holland, O.W., Narayan, J., Schow, C.E. III,Williams, J.SA. Short, K.T., Lawson, E., Appl.Phys.Lett. 41,711 (1982)Google Scholar
7. Callec, R., Favennec, P.N., Salvi, M., , L'Haridon, Geauneau, M., Appl. Phys.Lett. 59, 1872 (1991)Google Scholar
8. Kucheyev, S.O., Williams, J.S., Zou, J., Jagadish, C., Li, G., Appl.Phys. Lett. 77, 3577 (2000)Google Scholar
9. Liu, C., Mensching, B., Zeitler, M., Volz, K., Rauschenbach, B., .Rev. B. 57, 2530 (1998)Google Scholar
10. Volkert, C.A., J.Appl.Phys. 70, 3521 (1991)Google Scholar
11. Carosella, C.A., Molnar, B., Schiestel, S., and Sprague, J.A., MRS Internet Jour.of Nitride Semiconductor Res. 5s1, W11.70 (2000)Google Scholar
12. Pearton, S.J., Vartuli, C.B., Zolper, J.C., Yuan, C.,and Stall, R.A., Appl.Phys. Lett. 67, 1435 (1995)Google Scholar
13. Burm, J., Chu, K., Davis, W.A., Schaff, W.J., Eastman, L.F., Eustis, T.J., Appl.Phy.Lett. 70, 464 (1997)Google Scholar
14. Romano, L.T., Walle, C.G. Van de, Ager, J.W. III, Goetz, W. and Kern, R.S., J. Appl.Phys 87, 7745 (2000)Google Scholar