Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T23:17:04.231Z Has data issue: false hasContentIssue false

Surface Characterization of Calcium-Stabilized Zirconia Film by X-Ray Photoelectron Spectroscopy

Published online by Cambridge University Press:  10 February 2011

E. O. Bensadon
Affiliation:
Laboratòrio Interdisciplinar de Eletroquimica e Ceràmica, Departamento de Química, Universidade Federai de São Carlos, 13565–905 São Carlos, SP, Brazil; decp@power.ufscar.br
P. A. P. Nascente
Affiliation:
Centro de Caracterização e Desenvolvimento de Materials, Departamento de Engenharia de Materials, Universidade Federai de São Carlos, 13565–905 São Carlos, SP, Brazil; nascente@power.ufscar.br
L.O.S. Bulhões
Affiliation:
Laboratòrio Interdisciplinar de Eletroquimica e Ceràmica, Departamento de Química, Universidade Federai de São Carlos, 13565–905 São Carlos, SP, Brazil; decp@power.ufscar.br
E. C. Pereira
Affiliation:
Laboratòrio Interdisciplinar de Eletroquimica e Ceràmica, Departamento de Química, Universidade Federai de São Carlos, 13565–905 São Carlos, SP, Brazil; decp@power.ufscar.br
Get access

Abstract

A new methodology was developed to stabilized zirconia films at room temperature. The zirconium oxide films were prepared electrochemically by anodic oxidation of metallic zirconium at constant curcent density. X-ray diffraction (XRD) revealed the partial stabilization of the cubic phase in the ZrO2 films obtained in the presence of calcium. On the other hand, the films obtained in H3PO4 presented monoclinic phase. Scanning electron microscopy (SEM) showed that the oxide films obtained in calcium medium were porous, while the films obtained in H3PO4 were compact. X-ray photoelectron spectroscopy (XPS) identified ZrO2 and the intercalation of Na, N, P and CaO, as well as adventitious carbon. Using depth profiling, we observed that the concentrations of ZrO2, P and CaO increased with sputtering time.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fisher, G.; Ceramic. Bull. 65, p. 1, 355 (1986).Google Scholar
2. Shriver, D. F. and Farrington, G. C., Chem. Eng. News 63, p. 42 (1985).Google Scholar
3. Duwez, P., Odeli, F. and Brown, F.H.; J. Am. Ceramic Soc. 35, p. 107 (1952).Google Scholar
4. Gupta, T.K., Bechtold, J.H., Kuznicki, R.C., Cadoff, L.H. and Rossing, B.R.; J. Mater. Sci. 12, p. 2,421 (1977).Google Scholar
5. Ikonopisov, S.; Electrochim. Acta 22, p. 1, 077 (1977).Google Scholar
6. Sato, N. and Cohen, M.; J. Electrochem. Soc. 111, p. 512 (1964).Google Scholar
7. Li, Y.S., Wong, P.C. and Mitchell, K.A.R.; Appl. Surf. Sci. 89, p. 263 (1995).Google Scholar