Article contents
Structural Stability of Si-O-a-C:H/Si-a-C:H Layered Systems
Published online by Cambridge University Press: 10 February 2011
Abstract
Amorphous hydrogenated carbon films are of technological interest as protection coatings due to their special properties such as high hardness, chemical inertness, electrical insulation and infrared transparency. However, some applications still suffer from the poor thermal stability and adhesion problems of these coatings. To ensure good adhesion, especially on hardened steels and non-carbide forming substrates, an extra interlayer has to be deposited first. Often a silicon containing interlayer, Si-a-C:H for example, is used for this purpose. This Si-a-C:H interface layer was deposited by rf plasma deposition from tetramethylsilane. Then a-C:H films containing Si-O with a varying silicon content were produced from a mixture of acetylene and hexamethyldisiloxane. The structural changes upon annealing of these films were investigated using Raman spectroscopy. The analysis of the development of the different peaks upon annealing temperature reveals the transition from the amorphous structure to the more graphitic-like structure. This transition temperature increases by as much as 100°C when silicon is incorporated into the DLC film. However, when Si-O is incorporated instead of only silicon the same increase in temperature stability is observed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1996
References
- 11
- Cited by