Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T05:43:53.319Z Has data issue: false hasContentIssue false

Strained InGaAs/GaAs Multiple Quantum Wells Grown on Planar and Pre-Patterned GaAs(100) Substrates VIA Molecular Beam Epitaxy: Applications to Light Modulators and Detectors

Published online by Cambridge University Press:  21 February 2011

Li Chen
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
Kezhong Hu
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
K. C. Rajkumar
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
S. Guhae
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
R. Kapre
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
A. Madhukar
Affiliation:
Photonic Materials and Devices Laboratoiy, University of Southern California, Los Angeles, CA 90089-0241
Get access

Abstract

We report the realization of high quality strained InGaAs/GaAs multiple quantum wells (MQW) grown on planar GaAs (100) substrates through optimization of molecular beam epitaxical (MBE) growth conditions and structure. Such MQWs containing ∼ 11% In have lead to the realization of an asymmetric Fabry-Perot (ASFP) reflection modulator with a room temperature contrast ratio of 66:1 and an on-state reflectivity of 30%. For In composition ≥ 0.2, the improved optical quality for very thick (gt;2μm) InGaAs/GaAs MQWs grown on pre-patterned substrates is demonstrated via transmission electron microscopy (TEM) and micro-absorption measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For example, see Jewell, J. L., Lee, Y. H., Scherer, A., McCall, S. L., Olsson, N. A., Harbison, J. P. and Florez, L. T., Optical Engineering 29, 211 (1990).CrossRefGoogle Scholar
2. Kapre, R., Madhukar, A., Kaviani, K., Guha, S., and Rajkumar, K. C., Appl. Phys. Lett. 56, 922 (1990).Google Scholar
3. Woodward, T. K., Sizer, Theodore II, Sivco, E. L., and Cho, A. Y., Appl. Phys. Lett. 57, 548 (1990).Google Scholar
4. Chen, Li, Rajkumar, K. C., and Madhukar, A., Appl. Phys. Lett. 57, 2478 (1990).Google Scholar
5. Kapre, R., Hu, Kezhong, Chen, Li, Madhukar, A. and Guha, S., these Proceedings; see also, Li Chen, R. M. Kapre, Kezhong Hu, and A. Madhukar, Appl. Phys. Lett. (submitted).Google Scholar
6. Hu, Kezhong, Chen, Li, Madhukar, Anupam, Chen, Ping and Armand Tanguay, R. Jr., Appl. Phys. Lett. (submitted).Google Scholar
7. Kyriakakis, C., Karim, Z., Rilum, J. H., Jung, J. J., Tanguay, A. R. Jr., and Madhukar, A., OSA Topical Conference on Spatial Light Modulators and Applications, Incline Village, Nevada, Vol.14 of the 1990 OSA Technical Digest Series 14, 710, 1990.Google Scholar
8. Chen, P., Kim, J. Y., Madhukar, A., and Cho, N. M., J. Vac. Sci. Technol. B 4, 890 (1986).CrossRefGoogle Scholar
9. Law, K-K, Yan, R. H., Coldren, L. A., and Merz, J. L., Appl. Phys. Lett. 57, 1345 (1990).Google Scholar
10. Whitehead, M., Rivers, A., Parry, G., Roberts, J. S. and Button, C., Electron. Lett. 25, 984, (1989).Google Scholar
11. Pezeshki, B., Thomas, D. and Harris, J. S. Jr., IEEE Photon. Technol. Lett. 2, 807, 1990.Google Scholar
12. Fitzgerald, E. A., Watson, G. P., Proano, R. E., Ast, D. G., Kirchner, P. D., Pettit, G. D. and Woodall, J. M., J. Appl. Phys. 65, 2220 (1989).Google Scholar
13. Guha, S., Madhukar, A., Kaviani, K., and Kapre, R., J. Vac. Sci. Technol. B 8, 149 (1990). See also, S. Guha, A. Madhukar, and Li Chen, Appl. Phys. Lett. 56, 2304, 1990.Google Scholar
14. Van Eck, T. E., Chu, P., Chang, W. S. C., and Wieder, H. H., Appl.Phys. Lett. 49, 135 (1986).Google Scholar
15. Dobbelaere, W., Kalem, S., Huang, D., Unlu, M. S., and Morkoc, H, Electron. Lett. 24, 295 (1988).CrossRefGoogle Scholar
16. Goodhue, W. D., Burke, B. E., Aull, B. F., and Nichols, K. B., J. Vac. Sci. Technol. A6, 2356 (1988).Google Scholar
17. Hu, Kezhong, Chen, Li, Madhukar, A., Chen, P., Kaviani, K., Karim, Z., Kyriakakis, C. and Tanguay, A. R. Jr., Appl. Phys. Lett. (submitted).Google Scholar