Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T13:38:03.631Z Has data issue: false hasContentIssue false

Spectroscopic Determination of C2 Densities in AR/H 2/CH 4 and AR/H2/C60 Microwave Plasmas For Nanocrystalline Diamond Synthesis

Published online by Cambridge University Press:  10 February 2011

A. N. Goyette
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
J. E. Lawler
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
L. W. Anderson
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
D. M. Gruen
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
T. G. Mccauley
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
A. R. Krauss
Affiliation:
Materials Science and Chemistry Divisions, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

We have measured the steady state concentration of gas phase C2 in Ar/H2/CH4 and Ar/H2/C60 microwave plasmas used for the deposition of nanocrystalline diamond films. High sensitivity white light absorption spectroscopy is used to monitor the C2 density using the d 3 Π ← a3Π (0,0) vibrational band of C2 as chamber pressure, microwave power, substrate temperature and feed gas mixtures are varied in both chemistries. Understanding how these parameters influence the C2 density in the plasma volume provides insight into discharge mechanisms relevant to the deposition of nanocrystalline diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Erdimir, A., Bindal, C., Fenke, G. R., Zuiker, C., Csencsits, R., Krauss, A. R. and Gruen, D. M. Diamond Films and Technology 6 31 (1996).Google Scholar
2. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X. J. Appl. Phys. 75 1758 (1994).Google Scholar
3. Gruen, D. M., Liu, S., Krauss, A. R. and Pan, X. Appl. Phys. Lett. 64 1502 (1994).Google Scholar
4. Gruen, D. M., Zuiker, C. D., Krauss, A. R. and Pan, X. J. Vac. Sci. Technol. A 13 1628 (1995).Google Scholar
5. Anderson, L. W., Goyette, A. N. and Lawler, J. E. Adv. Atomic, Molecular and Optical Phys., submitted for publication.Google Scholar
6. Abrefah, J., Olander, D. R., Balooch, M. and Siekhaus, W. J. Appl. Phys. Lett. 60 1313 (1992).Google Scholar
7. Goyette, A. N., Lawler, J. E., Anderson, L. W., Gruen, D. M., McCauley, T. G., Zhou, D. and Krauss, A. R. J. Phys. D, submitted for publication.Google Scholar
8. Prasad, C. V. V. and Bemath, P. F. Astrophys. J. 426 812 (1994).Google Scholar
9. Thorne, A. Spectrophysics (New York: Chapman and Hall Ltd.) 1988.Google Scholar
10. Brewer, L. and Hagan, L. High Temp. Sci. 11 233 (1979).Google Scholar
11. Herzberg, G. Spectra of Diatomic Molecules (New York: Van Nostrand Reinhold) 1950.Google Scholar
12. McCauley, T. G., Gruen, D. M. and Krauss, A. R. Appl. Phys. Lett., submitted for publication.Google Scholar