Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-18T08:36:55.334Z Has data issue: false hasContentIssue false

Small Angle X-Ray Scattering (Saxs) and IR Study of Microvoid Dynamics in Annealed RF Sputter-Deposited A-SI:H

Published online by Cambridge University Press:  21 February 2011

H. Jia
Affiliation:
Ames Laboratory - USDOE and Physics Dept., Iowa State University, Ames, IA 50011
J. Shinar
Affiliation:
Ames Laboratory - USDOE and Physics Dept., Iowa State University, Ames, IA 50011
Y. Chen
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401
D. L. Williamson
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401
Get access

Abstract

A SAXS and IR study of microvoid distribution and dynamics in a-Si:H deposited by rf sputtering at 200 – 600 W on nominally unheated substrates is described and discussed. The 640 cm-1 band of the 200 W film yielded a total Si-bonded H content CH=21 at. %; the 840 – 890 cm-1 band yielded a dihydride content CH2 3.4 at. %. The SAXS measurements yielded a microvoid volume fraction vf=8.2 vol.%, and tilting SAXS data indicated elongated voids consistent with a columnar microstructure. In the other films, 9<CH<12 at. % and CH2 was negligible, vf was -2 vol. %. Annealing from 250°C to 310°C for 6 hrs resulted basically in no changes of CH and vf. However CH decreased and vf increased significantly after annealing at 350°C and above. The results showed a strong correlation between the IR determined CH and CH2 and the SAXS determined vf.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joannopoulos, J. D. and Lucovsky, G., editors, The Physics of Hydrogenated Amorphous Silicon, (Springer Verlag, New York, 1984).CrossRefGoogle Scholar
2. Baum, J., Gleason, K. K., Pines, A., Garroway, A. N. and Reimer, J. A., Phys. Rev. Lett., 56, 1377(1986).CrossRefGoogle Scholar
3. Chabal, Y. J. and Patel, C. K. N., Rev. Mod. Phys., 59, 835 (1987).Google Scholar
4. Wagner, H. and Beyer, W., Solid State Commun., 48, 585 (1983).Google Scholar
5. Albers, M. L., Shinar, J. and Shanks, H. R., J. Appl. Phys., 64, 1859 (1988).CrossRefGoogle Scholar
6. Shinar, J., Shinar, R., Mitra, S. and Kim, J.-M., Phys. Rev. Lett. 62, 2001 (1989).CrossRefGoogle Scholar
7. Shinar, R., Wu, X.-L., Mitra, S. and Shinar, J., in Amorphous Silicon Technology 1990, edited by Taylor, P.C., Hamakawa, Y., Thompson, M. J., Madan, A. and LeComber, P. G. (Mat. Res. Soc. Symp. Proc. 192, Pittsburgh, PA, 1990) p. 677.Google Scholar
8. Williamson, D. L., Manan, A. H., Nelson, B. P. and Crandall, R. S., Appl. Phys. Lett., 55, 783 (1989).Google Scholar
9. Manan, A. H., Williamson, D. L., Nelson, B. P. and Crandall, R. S., Sol. Cells, 27, 465 (1989).CrossRefGoogle Scholar
10. Manan, A. H., Williamson, D. L., Nelson, B. P. and Crandall, R. S., Phys. Rev. B, 40, 12024 (1989).Google Scholar
11. Cardona, M., Phys. Stat. Sol. (b), 118, 463 (1983).CrossRefGoogle Scholar
12. Shinar, J., Shinar, R., Wu, X.-L., Mitra, S. and Girvan, R. F., Phys. Rev. B, 43, 1631 (1991).CrossRefGoogle Scholar
13. Guinier, A. and Fournet, G., Small-Angle Scattering of X-rays. (John Wiley, New York, 1955), p. 30.Google Scholar
14. Porod, G., in Small Angle X-ray Scattering, edited by Glatter, O. and Kratky, O. (Academic Press, New York, 1982), p. 17.Google Scholar
15. Leadbetter, A. J., Rashid, A. A. M., Richardson, R. M., Wright, A. F. and Knights, J. C., Solid State Commun., 33, 973 (1980).Google Scholar
16. Jia, H., Shinar, J. and Wu, H. S., Bull. Am. Phys. Soc, 37, 128 (1992).Google Scholar
17. Biegelsen, D. K., Street, R. A., Tsai, C. C. and Knights, J. C., Phys. Rev. B, 20, 4839 (1979).CrossRefGoogle Scholar
18. Roorda, S., Doorn, S., Sinke, W. C., Scholte, P. M. L. O. and van Loenen, E., Phys. Rev. Lett., 62, 1880 (1989).Google Scholar