Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T15:27:07.039Z Has data issue: false hasContentIssue false

Silicon Carbide: Progress in Crystal Growth

Published online by Cambridge University Press:  25 February 2011

J. Anthony Powell*
Affiliation:
NASA Lewis Research Center, 21000 Brookpark Road, Cleveland, OH 44135
Get access

Abstract

Silicon carbide (SiC), with a favorable combination of semiconducting and refractory properties, has long been a candidate for high temperature semiconductor applications. Research on processes for producing the needed large-area high quality single crystals has proceeded sporadically for many years. Two characteristics of SiC have aggravated the problem of its crystal growth. First, it cannot be melted at any reasonable pressure, and second, it forms many different crystalline structures, called polytypes. Recent progress in the development of two crystal growth processes will be described. These processes are the modified Lely process for the growth of the alpha polytypes (e.g. 6H SiC), and a process for the epitaxial growth of the beta polytype (i.e. 3C or cubic SiC) on single crystal silicon substrates. A discussion of the semiconducting qualities of crystals grown by various techniques will also be included.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silicon Carbide, A High Temperature Semiconductor, edited by O'Connor, J. R. and Smiltens, J., (Pergamon, New York, 1960).Google Scholar
2. Silicon Carbide-1968, edited by Henisch, H. K. and Roy, R., (Pergamon, New York, 1969).Google Scholar
3. Silicon Carbide-1973, edited by Marshall, R. C., Faust, J. W., and Ryan, C. E., (University of South Carolina Press, Columbia, South Carolina, 1974).Google Scholar
4. Campbell, R. B., I.E.E.E. Trans. Industrial Electronics IE–29, 124, (1982).Google Scholar
5. Nishino, S., Hazuki, Y., Matsunami, H., and Tanaka, T., J. Electrochem. Soc. 127, 2674 (1980).Google Scholar
6. Nishino, S., Powell, J. A., Will, H. A., Appl. Phys. Lett. 42, 460 (1983).Google Scholar
7. Addamiano, A. and Sprague, J. A., Appl. Phys. Lett. 44, 525 (1984).Google Scholar
8. Sasaki, K., Sakuma, E., Misawa, S., Yoshida, S., and Gonda, S., Appl. Phys. Lett. 45, 72 (1984).Google Scholar
9. Liaw, P. and Davis, R. F., J. Electrochem. Soc. 132, 642 (1985).Google Scholar
10. Verma, A. R. and Krishna, P., Polymorphism and Polytypism in Crystals (Wiley, New York, 1966).Google Scholar
11. Pandey, D. and Krishna, P., in Current Topics in Materials Science, Vol.9, edited by Kaldis, E. (North Holland Publishing Co., 1982) Chap. 2, pp 415491.Google Scholar
12. Krishna, P., Marshall, R. C., and Ryan, C. E., J. Crystal Growth 8, 129 (1971).Google Scholar
13. Powell, J. A. and Will, H. A., J. Appl. Physics 43, 1400 (1972).Google Scholar
14. Pettenpaul, E., von Muench, W., and Ziegler, G., Inst. Phys. Conf. Ser. 53, 21 (1980).Google Scholar
15. Knippenberg, W. F., Philips Res. Repts. 18, 161 (1963).Google Scholar
16. Lely, J. A. Ber. Dt. Keram. Ges. 32, 229 (1955).Google Scholar
17. Golightly, J. P. and Beaudin, L. J., Ref. 2, pp. S119-S128.Google Scholar
18. Nelson, W. E., Halden, F. A., and Rosengreen, A., J. Appl. Phys. 37, 333 (1966).Google Scholar
19. Griffiths, L. B. and Mlavsky, A.I., J. Electrochem. Soc. 111, 805 (1964).Google Scholar
20. Knippenberg, W. F. and Verspui, G., Philips Res. Repts. 21, 113 (1966).Google Scholar
21. Tairov, Y. M. and Tsvetkov, V. F., J. Crystal Growth 43, 209 (1978).Google Scholar
22. Tairov, Y. M. and Tsvetkov, V. F., J. Crystal Growth 52, 146 (1981).Google Scholar
23. Ziegler, G., Lanig, P., Theis, D., and Weyrich, C., I.E.E.E. Trans. Electron Devices ED–30, 277 (1983).Google Scholar
24. Kong, H. S., Glass, J. T., and Davis, R. F., Appl. Phys. Lett. 49, 1074 (1986).Google Scholar
25. Parsons, J. D., Bunshah, R. F., and Stafsudd, O. M., Solid State Technology 28[11], 133 (1985).Google Scholar
26. Powell, J. A., Matus, L. G., and Kuczmarski, M. A., J. Electrochem. Soc. 134, 1558 (1987).Google Scholar
27. Yamanaka, M., Daimon, H., Sakuma, E., Misawa, S., and Yoshida, S., J. Appl. Phys. 61, 599 (1987).Google Scholar
28. Suzuki, A., Uemoto, A., Shigeta, M., Furukawa, K., and Nakajima, S., Appl. Phys. Lett. 49, 450 (1986).Google Scholar
29. Segall, B., Alterovitz, S. A., Haugland, E. J., and Matus, L. G., Appl. Phys. Lett. 49, 584 (1986).Google Scholar
30. Chorey, C. M., Pirouz, P., Powell, J. A., and Mitchell, T. E., in Semiconductor-Based Heterojunctions: Interfacial Structure and Stability, edited by Green, M. L. et al., (The Metallurgical Society, Inc., Warrendale, PA, 1986) pp. 115125.Google Scholar
31. Nutt, S. R., Smith, D. J., Kim, H. J., and Davis, R. F., Appl. Phys. Lett. 50, 203 (1987).Google Scholar
32. Pirouz, P., Chorey, C. M., and Powell, J. A., Appl. Phys. Lett. 50, 221 (1987).Google Scholar
33. Ryu, J., Kim, H. J., and Davis, R. F., Appl. Phys. Lett. 47, 850 (1985).Google Scholar
34. Shibahara, K., Nishino, S., Matsunami, H., J. Crystal Growth 78, 538 (1986).Google Scholar
35. Shibahara, K., Saito, T., Nishino, S., Matsunami, H., I.E.E.E. Electron Dev. Lett. EDL–7, 692 (1986).Google Scholar
36. Powell, J. A., Matus, L. G., Kuczmarski, M. A., Chorey, C. M., Cheng, T., and Pirouz, P., Submitted to Appl. Phys. Lett.Google Scholar
37. Vodakov, Y. A., Lomakina, G. A., and Mokhov, E. N., Soy. Phys.-Solid State 24, 780 (1982).Google Scholar