Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T12:24:56.787Z Has data issue: false hasContentIssue false

Pyrolysis of Organometallic Precursors As A Route to Novel Ceramic Materials

Published online by Cambridge University Press:  25 February 2011

Leonard V. Interrante
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Wayde R. Schmidt
Affiliation:
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Paul S. Marchetti
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Gary E. Maciel
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, CO 80523
Get access

Abstract

Homogeneously mixed nanocrystalline composites incorporating SiC, Si3N4, AIN, BN and TiN, and SiC/AIN solid solutions were prepared from mixtures of known precursors to the separate components and specially prepared singlesource precursors. These novel materials are of potential interest as tough, abrasion-resistant coatings, continuous fibers and matrices for high temperature composites and, possibly, superplastic ceramics. Solid state NMR spectroscopy along with other chemical and materials characterization methods have been employed in studies of the precursor-to-ceramic conversion process and the characterization of the final ceramic products. The results of these studies are described and their implications with respect to the relationship between precursor structure, pyrolysis chemistry and the final ceramic composition and microstructure are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. a) Peuckert, M., Vaahs, T., and Bruck, M., Adv. Mater., 2 (1990) 398; b) R. T. Paine and C. K. Narula, Chem. Rev., 90 (1990) 73; c) K. J. Wynne and R. W. Rice, Ann. Rev. Mater. Sci., 14 (1984) 297.Google Scholar
2. a) Seyferth, D., Rees, W. Jr., Haggerty, J. S., and Lightfoot, A., Chem. Mater., 1 (1989) 45: b) D. Seyferth and H. Plenio, J. Am. Ceram. Soc., 73[7] (1990) 2131; c) H. Du, B. Gallois, and K. E. Gonsalves, Chem. Mater., 1 (1989) 569.Google Scholar
3. a) Zangvil, A. and Ruh, R., J. Am. Ceram. Soc., 71[10] (1988) 884; b) W. Rafaniello, M. R. Plichta, and A. V. Virkar, J. Am. Ceram. Soc., 66[4] (1983) 272; c) W. Rafaniello, K. Cho, and A. Virkar, J. Mater. Sci., 16 (1981) 3479-3488; d) R. Ruh and A. Zangvil, J. Am. Ceram. Soc., 65[5] (1982) 260-265; e) A. Zangvil and R. Ruh, Mater. Sci. Eng., 71 (1985) 159-164; f) M. Mitomo, M. Tsutsumi, and Y. Kishi, J. Mater. Sci. Letters, 7 (1988) 1151-1153.Google Scholar
4. a) Czekaj, C. L., Hackney, M. L. J., Hurley, W. J. Jr., Interrante, L. V., Sigel, G. A., Schields, P. J., and Slack, G. A., J. Am. Ceram. Soc., 73[2] (1990) 352357; b) L. V. Interrante, C. L. Czekaj, M. L. J. Hackney, G. A. Sigel, P. J. Schields, and G. A. Slack, Mat. Res. Soc. Symp. Proc. Vol. 121 “Better Ceramics Through Chemistry III”, (1988) Materials Research Society 465; c) M. L. J. Hackney, L. V. Interrante, G. A. Slack, and P. J. Schields, in Ultrastrueture Processing of Advanced Ceramics, eds. J. D. Mackenzie and D. R. Ulrich, J. Wiley and Sons: New York, (1988) 99; d) L. V. Interrante, W. R. Schmidt, S. N. Shaikh, R. Garcia, P. S. Marchetti, and G. E. Maciel, “Silicon Carbide-Aluminum Nitride Solid Solutions by Pyrolysis of Organometallics” in Ultrastructure Processing of Ceramics. Glasses. Composites. Ordered Polymers and Advanced Optical Materials, (1992) J. Wiley & Sons in press; e) R. T. Paine, J. F. Janik, and C. Narula, Mat. Res. Soc. Symp. Proc. Vol. 121 “Better Ceramics Through Chemistry It1”, (1988) Materials Research Society, 461.Google Scholar
5. Morris, J. R. and Tanzilli, R. A., “Aluminum Nitride-Boron Nitride Composite Article and Method of Making Same”, U.S. Patent 4,666,873 (1987).Google Scholar
6. Mazdiyasni, K. S. and Ruh, R., J. Am. Ceram. Soc., 64[7] (1981) 415.Google Scholar
7. Shimoda, H., “Sintered Hard Alloys for Cutting Tools”, Japanese Patent 61,179,847 (August 1986).Google Scholar
8. a) Sukumar, V., Thesis, M.S., “Effect of Boron Nitride on the Coarsening of Silicon Nitride”, Rensselaer Polytechnic Institute, December 1989; b) V. Sukumar, W. R. Schmidt, R. H. Doremus, and L. V. Interrante, Mat. Letters, 9[4] (1990) 117.Google Scholar
9. Maehara, Y. and Langdon, T. G., J. Mater. Sci., 25[5] (1990) 2275.Google Scholar
10. Chen, I.-W. and Xue, L. A., J. Am. Ceram. Soc., 73[9] (1990) 2585.Google Scholar
11. Eastman, J. and Siegel, R., Res. & Devel. [January] (1989) 56.Google Scholar
12. Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., and Niihara, K., Nature, 344 (March 29, 1990) 421423.CrossRefGoogle Scholar
13. Karch, J., Birringer, R., and Gleiter, H., Nature, 330 (Dec. 10. 1987) 556558.Google Scholar
14. Kriechbaum, G. W. and Kleinschmit, P., Adv. Mater., [10] (1989) 330.Google Scholar
15. a) Roy, R., Science, 238 (1987) 1664; b) D. R. Ulrich, Chem. & Engr. News, [January 1] (1990) 28; c) A. Clearfield, A. M. Gadalia, W. H. Marlow, and T. W. Livingston, J. Am. Ceram. Soc., 72[10] (1989) 1789.Google Scholar
16. a) Greil, P. and Siebold, M., Proc. 2nd Int. Ceram. Sci. and Tech. Cong. Orlando, FL, Nov. 12-15, 1990, Ceram. Trans. Adv. Ceram. Mat., 19 (1991) 43; b) D. Seyferth, N. Bryson, D. P. Workman, and C. A. Sobon, J. Am. Ceram. Soc., 74[10] (1991) 2687-2689.Google Scholar
17. Interrante, L. V., Hurley, W. J. Jr., Schmidt, W. R., Kwon, D., Doremus, R. H., Marchetti, P. S., and Maciel, G. E. in Ceramic Transactions Vol. 19. Advanced Composite Materials, Sacks, M. D., ed. (1991) American Ceramic Society, Westerville, OH, p. 3.Google Scholar
18. Schmidt, W. R., Sukumar, V., Hurley, W. J. Jr., Garcia, R., Interrante, L. V., and Doremus, R. H., J. Am. Ceram. Soc., 73[8] (1990) 2412.Google Scholar
19. Narsavage, D. M., Interrante, L. V., Marchetti, P. S., and Maciel, G. E., Chem. Mater., 3[4] (1991) 721.Google Scholar
20. Schmidt, W. R., Interrante, L. V., Doremus, R. H., Trout, T. K., Marchetti, P. S., and Maciel, G. E., Chem. Mater., 3[2] (1991) 257267.Google Scholar
21. Whitmarsh, C. K. and Interrante, L. V., Organometallics, 10 (1991) 1336.Google Scholar
22. Interrante, L. V., Carpenter, L. E. II, Whitmarsh, C., Lee, W., Garbauskas, M., and Slack, G. A., Mat. Res. Soc. Symp. Proc., 73 (1986) 359366.Google Scholar
23. Dupree, R., Lewis, M.H., and Smith, M.E., J. Appl. Cryst., 21 (1988) 109116.Google Scholar
24. Schmidt, W. R., Hurley, W. J. Jr., Doremus, R. H., Interrante, L. V., and Marchetti, P. S., in Ceramic Transactions Vol. 19. Advanced Composite Materials, Sacks, M. D., ed. (1991) American Ceramic Society, Westerville, OH, p. 19.Google Scholar
25. Borisov, S.N., Voronkov, M.G., and Lukevits, E.Ya., Oreanosilicon Heteropolvmers and Heterocompounds, Plenum Press: New York, (1970), 309.Google Scholar
26. Narula, C. K., Schaeffer, R., and Paine, R. T., J. Am. Chem. Soc., 109 (1987) 5556.Google Scholar
27. Schmidt, W. R., Hurley, W. J. Jr., Sukumar, V., Doremus, R. H., and Interrante, L. V., Mat. Res. Soc. Symp. Proc., 171 (1990) 79.Google Scholar
28. Kwon, D., Schmidt, W. R., Intcrrante, L. V., Marchetti, P., and Macici, G. in Inorganiciand Orvanometallic Oligomers and Polymers, Harrod, J. F. and Laine, R. M., eds. (1991) Kluwer Academic Publishers, p. 191197.Google Scholar
29. a) Nyquist, R. A. and Kagel, R. O., Infrared Spectra of Inorganic Compounds, Academic Press, NY (1971); b) C. K. Narula, R. Schaeffer, A. K. Datye, T. T. Borck, B. M. Rapko, and R. T. Paine, Chem. Mater., 2 (1990) 384.Google Scholar
30. Thomas, J., Weston, N. E., and O'Connor, T. E., J. Am. Chem. Soc., 84[24] (1963) 4619.Google Scholar
31. Schmidt, W. R., Jones, D. M., Marchetti, P. S., Interrante, L. V., Doremus, R. H., and Maciel, G. E., “Poly(borosilazane) Precursors to Ceramic Nanocomposites”, submitted to J. Mater. Chem.Google Scholar