Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T04:28:23.406Z Has data issue: false hasContentIssue false

Present Status Of Hot Wire Chemical Vapor Deposition Technology

Published online by Cambridge University Press:  01 February 2011

R.E.I. Schropp*
Affiliation:
Utrecht University, Debye Institute, SID - Physics of Devices, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
Get access

Abstract

In the last few years, tremendous progress has been made in the field of Hot Wire Chemical Vapor Deposition (HWCVD): (1) It has been shown that there are no fundamental limitations in HWCVD with respect to substrate area. Using a periodic configuration of multiple short wires, good uniformity (± 7.5 %) has been demonstrated by Anelva over an area of 96 cm × 40 cm. (2) High quality microcrystalline Si can be produced. Solar cells in the n-i-p configuration are currently better than those made by PECVD. At Jülich, the efficiency of such cells is 9.4 %, and Utrecht has recently made the first HWCVD multibandgap triple junction solar cells, (3) HWCVD offers the potential of ultra high deposition rates. At NREL, a-Si:H has been deposited at rates in excess of 12 nm/s, and at Utrecht University μc-Si:H rates are in excess of 1 nm/s. (4) Thin film transistors (TFTs) with mobilities in excess of 1 cm2/Vs with an a-Si:H channel have been shown to be stable and μc-Si:H TFTs have been made with mobilities in excess of 40 cm2/Vs. (5) The efficient production of atomic H in HWCVD is beneficial in passivation processes, but it can also be applied in efficient etching processes. (6) Alloys of Si with various functions can be made, such as SiNx for antireflection and passivation coatings. Remarkably, all of the above results have been achieved without detailed knowledge about the primary reactions at the filament, the gas phase reactions, and the reactions with the growing film. The choice of filament material and its operation temperature have a large influence on the production of various reaction species and thus, on the structure of the resulting film. HWCVD is basically an ion-free deposition technique, which is an advantage for many kinds of thin films. HWCVD has also proven its feasibility in polymer deposition and nanotube formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsumura, H., Jpn. J. Appl. Phys. 25 (1986) L949.Google Scholar
2. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69 (1991) 6728.Google Scholar
3.see: Proceedings of the 2 nd International Conference on Cat-CVD (Hot Wire CVD) Process, Denver, USA, Sep. 10-13, 2002, Eds.: Schropp, R.E.I., Schubert, M.B., Conde, J.P., Mahan, A.H., and Matsumura, H., to be published in Thin Solid Films (2003).Google Scholar
4. Smith, J.N. and Fite, W.L., J. Chem. Phys. 37 (1962) 898.Google Scholar
5. Wiesmann, H.J.: US patent 4,237,150; Dec. 2, 1980.Google Scholar
6. Wiesmann, H., Ghosh, A.K., McMahon, T., and Strongin, M., J. Appl. Phys. 50 (1979) 3752.Google Scholar
7. Matsumura, H. and Tachibana, H., Appl. Phys. Lett. 47 (1985) 833.Google Scholar
8. Doyle, J., Robertson, R., Lin, G.H., He, M.Z., and Gallagher, A., J. Appl. Phys. 64 (1988) 3215.Google Scholar
9. Matsumura, H., Mat. Res. Soc. Symp. Proc. 118 (1988) 43.Google Scholar
10. Matsumura, H., J. Appl. Phys. 65 (1989) 4396.Google Scholar
11. Mahan, A.H., Nelson, B.P., Salamon, S., and Crandall, R.S., J. Non-Cryst. Solids 137&138 (1991) 657. Google Scholar
12. Schropp, R.E.I. and Zeman, M., Amorphous And Microcrystalline Silicon Solar Cells: Modeling, Materials, and Device Technology, (Kluwer Academic Publishers, Boston/Dordrecht/London, ISBN 0-7923-8317-6, 1998).Google Scholar
13. Schropp, R.E.I., Feenstra, K.F., Molenbroek, E.C., Meiling, H., and Rath, J.K., Phil. Mag B 76 (1977) 309.Google Scholar
14. Nelson, B., Iwaniczko, E., Mahan, A.H., Wang, Q., Xu, Y., Crandall, R.S., and Branz, H.M., Thin Solid Films 395 (2001) 292.Google Scholar
15. Duan, H.L., Zaharias, G.A., and Bent, S.F., Mat. Res. Soc. Symp. Proc. 664 (2001) A3.1.1.Google Scholar
16. Veenendaal, P.A.T.T. van, Werf, C.M.H. van der, Rath, J.K., and Schropp, R.E.I., J. Non-Cryst. Solids 299-302 (2002) 1184.Google Scholar
17. Morrison, S. and Madan, A., Proc. of 17th European PVSEC (2001) 2951.Google Scholar
18. Brühne, K., Schubert, M.B., Köhler, C., and Werner, J.H., Thin Solid Films 395 (2001) 163.Google Scholar
19. Inoue, K., Tange, S., Tonokura, K., and Koshi, M., Thin Solid Films 395 (2001) 42.Google Scholar
20. Veenendaal, P.A.T.T. van, Gijzeman, O.L.J., Rath, J.K., and Schropp, R.E.I., Thin Solid Films 395 (2001) 194.Google Scholar
21. Werf, C.H.M. van der, Hardeman, A.J., Veenendaal, P.A.T.T. van, Veen, M.K. van, Rath, J.K., and Schropp, R.E.I., Thin Solid Films 427 (2003) 41.Google Scholar
22. Matsumura, H., Jpn.J. Appl. Phys. 37 (1998) 3175 Google Scholar
23. Honda, N., Masuda, A., and Matsumura, H., J. Non-Cryst. Solids 266-269 (2000) 100.Google Scholar
24. Duan, H.L., Zaharias, G.A., and Bent, S.F., Thin Solid Films 395 (2001) 36.Google Scholar
25. Molenbroek, E.C., Ph.D.-thesis, University of Colorado (1995).Google Scholar
26. Sakai, S., Deisz, J., and Gordon, M.S., J.Phys. Chem. 93 (1989) 1888.Google Scholar
27. Gallagher, A., Thin Solid Films 395 (2001) 25.Google Scholar
28. Goodwin, D.G., Mat. Res. Soc. Symp. Proc. 557 (1999) 79.Google Scholar
29. Ishibashi, K., Thin Solid Films 395 (2001) 55.Google Scholar
30. Mahan, A.H., Xu, Y., Williamson, D.L., Beyer, W., Perkins, J.D., Vanecek, M., Gedvilas, L.M., Nelson, B.P., J. Appl. Phys. 90 (2001) 5038.Google Scholar
31. Matsumura, H., Umemoto, H., Izumi, A., and Masuda, A., to be published in [3].Google Scholar
32. Feenstra, K.F., Schropp, R.E.I. and Weg, W.F. van der, J. Appl. Phys. 85 (1999) 6843.Google Scholar
33. Veen, M.K. van, Ph.D. thesis, Utrecht University, in print (2003).Google Scholar
34. Veenendaal, P.A.T.T. van, Ph.D. thesis, Utrecht University (2002).Google Scholar
35. Stannowski, B., Ph.D. thesis, Utrecht University (2002).Google Scholar
36. Rath, J.K., Meiling, H. and Schropp, R.E.I., Jpn. J. Appl. Phys. 36 (1997) 5436.Google Scholar
37. Schropp, R.E.I., Stannowski, B., Rath, J.K., Werf, C.H.M. van der, Chen, Y., and Wagner, S., Mat. Res. Soc. Symp. Proc. 609 (2000) A31.3.Google Scholar
38. Schropp, R.E.I., Werf, C.H.M. van der, Veen, M.K. van, Veenendaal, P.A.T.T. van, Zambrano, R. Jimenez, Hartman, Z., Löffler, J., and Rath, J.K., Mat.Res. Soc. Symp. Proc. 664 (2001) A15.6.1.Google Scholar
39. Werf, C.H.M. van der, Veenendaal, P.A.T.T. van, Veen, M.K. van, Hardeman, A.J., Rusche, M.Y.S., Rath, J.K., and Schropp, R.E.I., to be published in [3].Google Scholar
40. Veenendaal, P.A.T.T. van, Rath, J.K., Gijzeman, O.L.J., and Schropp, R.E.I., Polycrystalline Semiconductors VI – Materials, Technologies, and Large Area Electonics, in: Bonnaud, O., Mohammed-Brahim, T., Strunk, H.P., Werner, J.H. (Eds.), Scitech Publ., Solid State Phenomena 80-81 (2001) 53.Google Scholar
41. Fonrodana, M., Soler, D., Asensi, J.M., Bertomeu, J., and Andreu, J., J. Non-Cryst. Solids 229-302, (2002) 14.Google Scholar
42. Sommer, M. and Smith, F.W., J. Mater. Res. 511 (1990) 2433.Google Scholar
43. Zeiler, E., Schwarz, S., Rosiwal, S.M., and Singer, R.F., Materials Science & Engineering A335 (2002) 236.Google Scholar
44. Kondo, M., Fukawa, M., Guo, L., and Matsuda, A., J. Non-Cryst. Solids 266-269 (2000) 84.Google Scholar
45. Stannowski, B., Rath, J.K., and Schropp, R.E.I., J. Appl. Phys. 93 (2003) 2618.Google Scholar
46. Schropp, R.E.I., Stannowski, B., and Rath, J.K., J. of Non-Cryst. Solids 299-302 (2002) 1304.Google Scholar
47. Veenendaal, P.A.T.T. van, Savenije, T.J., Rath, J.K., and Schropp, R.E.I., Thin Solid Films 403 & 404 (2002) 175.Google Scholar
48. Schropp, R.E.I. and Rath, J.K., IEEE Trans. Electron Dev. 46 (1999) 2069.Google Scholar
49. Schropp, R.E.I., Xu, Y., Iwaniczko, E., Zaharias, G.A., and Mahan, A.H., Mat. Res. Soc. Symp. Proc. 715 (2002) A26.3.4.Google Scholar
50. Beyer, W., Semiconductorsand Semimetals 61 (1999) 165.Google Scholar
51. Feenstra, K.F., Alkemade, P. F. A., Algra, E., Schropp, R.E.I., and vanderWeg, W. F., Prog. Photovolt. Res. Appl. 7 (1999) 341.Google Scholar