Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T05:52:22.018Z Has data issue: false hasContentIssue false

Physical Properties of Two Metastable States of Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

G.K. Hubler
Affiliation:
Naval Research Laboratory, Washington, D.C.;
C.N. Waddell
Affiliation:
Physics and Materials Science Departments, University of Southern California, Los Angeles, California;
W.G. Spitzer
Affiliation:
Physics and Materials Science Departments, University of Southern California, Los Angeles, California;
J.E. Fredrickson
Affiliation:
Physics-Astronomy Department, California State University, Long Beach, California
T.A. Kennedy
Affiliation:
Naval Research Laboratory, Washington, D.C.;
Get access

Abstract

Characterization of the two metastable states of amorphous Si produced by ion implantation is extended to include electron paramagnetic resonance, fundamental absorption edge, and density measurements in addition to infrared reflection. It is found that the properties of the two a-Si states are not dependent upon the mass of the incident ion (12C, 29Si, 31p, 120Sn) or upon the anneal temperature for 400°≤TA≤600°C. The dangling-bond density drops about a factor of 2, the absorption coefficient drops by more than a factor of 5, but the density does not change when the a-Si makes a transition between the two states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hubler, G.K., Waddell, C.N., Spitzer, W.G., Fredrickson, J.E., Prussin, S. and Wilson, R.G., J. Appl. Phys. 50, 3294 (1979).Google Scholar
2. Fredrickson, J.E., Waddell, C.N., Spitzer, W.G. and Hubler, G.K., Appl. Phys. Lett. 40, 172 (1982).Google Scholar
3. Waddell, C.N., Spitzer, W.G., Hubler, G.K. and Fredrickson, J.E., J. Appl. Phys. 53, 5851 (1982).Google Scholar
4. Janai, M., Allred, D.D., Booth, D.C. and Seraphin, B.O., Solar Energy Mat. 1, 11 (1979).Google Scholar
5. Spitzer, W.G., Hubler, G.K. and Kennedy, T.A., Nucl. Instr. Meth. 209/210. 309 (1983).Google Scholar
6. Wesch, W. and Gotz, G., Radiat. Eff. 49, 137 (1980).Google Scholar
7. Hubler, G.K., Malmberg, P.R., Waddell, C.N., Spitzer, W.G. and Fredrickson, J.E., Radiat. Eff. 60, 35 (1982).Google Scholar
8. Tu, K.N., Chaudhari, P., Lai, K., Crowder, B.L. and Tan, S.I., J. Appl. Phys. 43, 4262 (1972).Google Scholar
9. Thomas, P.A., Brodsky, M.H., Kaplan, D. and Lepine, D., Phys. Rev. B 18, 3059 (1978.)Google Scholar
10. Connell, G.A.N., “Optical Properties of Amorphous Semiconductors”, in Amorphous Semiconductors, ed. Brodsky, M.H., (Springer Verlag, Berlin, 1979).Google Scholar
11. Donovan, E.P., Spaepen, F., and Turnbull, D., these proceedings.Google Scholar
12. Wang, K-W., Spitzer, W.G., and Hubler, G.K., unpublished.Google Scholar
13. Turnbull, D., Metastable Materials Formation by Ion Implantation, eds. Picraux, S.T. and Choyke, W.J. (Elsevier, 1982) 103.Google Scholar
14. Csepregi, L., Chu, W.K., Muller, H., and Mayer, J.W., Rad. Eff. 28, 227 (1976).Google Scholar