Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T21:35:48.530Z Has data issue: false hasContentIssue false

Photolithographic Patterning of Vacuum–Deposited Organic Light Emitting Devices

Published online by Cambridge University Press:  10 February 2011

P. F. Tian
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, New Jersey 08544
P. E. Burrows
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, New Jersey 08544
V. Bulovic
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, New Jersey 08544
S. R. Forrest
Affiliation:
Department of Electrical Engineering, Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

A photolithographic technique to fabricate vacuum-deposited organic light emitting devices has been demonstrated. The photolithographically patterned, yet unpackaged devices show no sign of deterioration in room ambient when compared with devices fabricated using shadow masks. Furthermore, the environmental robustness of the encapsulated devices makes them particularly useful in fabricating high resolution, full color displays.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. VanSlyke, S. A., and Tang, C. W., 1995 Digest of LEOS Summer Topical Meetings, p.3 (1995).Google Scholar
2. Shi, J., and Tang, C. W., Appl. Phys. Lett., 70, 1665, March (1997).Google Scholar
3. VanSlyke, S. A., Chen, C. H., and Tang, C. W., Appl. Phys. Lett., 69, 2160 (1996).Google Scholar
4. Rothberg, L. J., and Lovinger, A. J., J. Mater. Res., 11, 3174 (1996).Google Scholar
5. Burrows, P. E., Forrest, S. R., and Thompson, M. E., Current Opinion in Solid State & Materials Science, Vol 2, No 2, 236 (1997).Google Scholar
6. Forrest, S. R., Burrows, P. E., and Thompson, M. E., Laser Focus World, 99, Feb. (1995).Google Scholar
7. Tang, C. W., and VanSlyke, S. A., Appl. Phys. Lett., 51, 913 (1987).Google Scholar
8. Yap, D., Burrows, P. E., and Forrest, S. R., Organic Thin Films for Photonics Applications, Technical Digest, 302 (1995).Google Scholar
9. Taylor, R. B., Burrows, P. E., and Forrest, S. R., IEEE Photonics Technology Letters, Vol.9, No. 3, 365, March (1997).Google Scholar
10. Wu, C. C., Sturm, J. C., Register, R. A., and Thompson, M. E., Appl. Phys. Lett., 69, 3117 (1996).Google Scholar
11. Lidzey, D. G., Pate, M. A., Weaver, M. S., Fisher, T. A., and Bradley, D. D. C., Synthetic Metals, 82, 141 (1996).Google Scholar
12. Papadimitrakopoulos, F., Zhang, X., Thomsen, D. L., and Higginson, K. A., Chem, Mater, 8, 1363 (1996).Google Scholar
13. Tang, C. W., U.S. Patent No. 5 276 380; C. W. Tang, and J. E. Littman, U. S. Patent No. 5 294 869; C. W. Tang, D. J. Williams, and J. C. Chang, U. S. Patent No. 5 294 870.Google Scholar
14. Hosokawa, C., Eida, M., Matsuura, M., Fukuoka, K., Nakamura, H., and Kusumoto, T., SID 97 Digest, 1073 (1997).Google Scholar
15. Tian, P. F., Burrows, P. E., and Forrest, S. R., Appi. Phys. Lett., 71, 3197, December (1997).Google Scholar
16. Burrows, P. E., Shen, Z., Bulovic, V., McCarty, D. M., Forrest, S. R., Cronin, J. A., and Thompson, M. E., J. Appl. Phys. 10, 79, May (1996).Google Scholar
17. Burrows, P. E., Bulovic, V., Forrest, S. R., Sapochak, L. S., McCarty, D. M., and Thompson, M. E., Appl. Phys. Lett., 65, 2922 (1994).Google Scholar
18. Shen, Z., Burrows, P. E., Bulovic, V., Forrest, S. R., and Thompson, M. E., Science, 276, 2009, 1997.Google Scholar
19. Gu, G., Burrows, P. E., and Forrest, S. R., IEEE J. Selected Topics in Quantum Electronics, submitted.Google Scholar