Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T15:27:04.051Z Has data issue: false hasContentIssue false

Persistent Photoconductivity in High-mobility AlxGa1−xN/AlN/GaN Heterostructures Grown by Metal-organic Vapor-phase Epitaxy

Published online by Cambridge University Press:  01 February 2011

Necmi Biyikli
Affiliation:
nbiyikli@vcu.edu, Virginia Commonwealth University, Electrical & Computer Engineering, 601 W. Main St., Richmond, VA, 23284, United States
Umit Ozgur
Affiliation:
uozgur@vcu.edu, Virginia Commonwealth University, Electrical & Computer Engineering, 601 W. Main St., Richmond, VA, 23284, United States
Xianfeng Ni
Affiliation:
nix@vcu.edu, Virginia Commonwealth University, Electrical & Computer Engineering, 601 W. Main St., Richmond, VA, 23284, United States
Yi Fu
Affiliation:
fuy@vcu.edu, Virginia Commonwealth University, Electrical & Computer Engineering, 601 W. Main St., Richmond, VA, 23284, United States
Hadis Morkoc
Affiliation:
hmorkoc@vcu.edu, Virginia Commonwealth University, Electrical & Computer Engineering, 601 W. Main St., Richmond, VA, 23284, United States
Cagliyan Kurdak
Affiliation:
kurdak@umich.edu, University of Michigan, Physics, Ann Arbor, MI, 48109, United States
Get access

Abstract

We report on the persistent photoconductivity (PPC) effect in AlxGa1−xN/AlN/GaN heterostructures with two different Al compositions (x=0.15 and 0.25). The two-dimensional electron gas (2DEG) was characterized by Shubnikov-de Haas and Hall measurements. At cryogenic temperatures under optical illumination, the 2DEG carrier density and mobility was enhanced. The persistent photocurrent in both samples exhibited a strong dependence on illumination wavelength.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mohammad, S. N., Salvador, A., and Morkoç, H., Proc. IEEE 83, 1420 (1996).Google Scholar
2. Smorchkova, I. P., Chen, L., Mates, T., Shen, L., Heikman, S., Moran, B., Keller, S., DenBaars, S. P., Speck, J. S., and Mishra, U. K., J. Appl. Phys. Lett. 90, 5196 (2001).Google Scholar
3. Manfra, M. J., Baldwin, K. W., Sergent, A. M., West, K. W., Molnar, R. J., and Caissie, J., Appl. Phys. Lett. 85, 5394 (2004).Google Scholar
4. Johnson, C., Lin, J. Y., Jiang, H. X., Khan, M. Asif, and Sun, C. J., Appl. Phys. Lett. 68, 1808 (1996).Google Scholar
5. Qiu, C. H. and Pankove, J. I., Appl. Phys. Lett. 70, 1983 (1997).Google Scholar