Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T05:42:05.392Z Has data issue: false hasContentIssue false

Oxygen Deficiency and Vacancy Formation in LSCO/PLZT/LSCO Capacitors

Published online by Cambridge University Press:  10 February 2011

T. Friessnegg
Affiliation:
Department of Materials Science and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
B. Nielsen
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973
V. J. Ghosha
Affiliation:
Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973
S. Aggarwal
Affiliation:
Department of Materials Science and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
D. J. Keeble
Affiliation:
Carnegie Laboratory of Physics, University of Dundee, Dundee DDI 4HN, United Kingdom
E. H. Poindexter
Affiliation:
Army Research Laboratory, Adelphi, Maryland 20783
R. Ramesh
Affiliation:
Department of Materials Science and Nuclear Engineering, University of Maryland, College Park, Maryland 20742
Get access

Abstract

Vacancy type defects in La0.5 Sr0.5CoO3/Pb0.9La0.1Zr0.2 Ti0.8/La0.5Sr0.5CoO3 capacitors were investigated by positron depth profiling. Post-growth annealing of the capacitor structure in oxygen deficient atmosphere exhibits the formation of vacancy type defects in all layers. A significant increase in open volume defects was found in the top and bottom electrode. The changes in the bottom electrode were studied more closely by etching off the top layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ramesh, R., Gilchrist, H., Sands, T., Keramidas, V. G., Haakenaasen, R., and Fork, D.K., Appl. Phys. Lett. 63, 3592 (1993).Google Scholar
2. Pike, G. E., Warren, W. L., Dimos, D., Tuttle, B. A., Lee, J., Ramesh, R., Keramidas, V. G., and Evans, J. T. Jr, Appl. Phys. Lett. 66, 484 (1995).Google Scholar
3. Lee, J., Ramesh, R., Keramidas, V. G., Warren, W. L., Pike, G. E., and Evans, J. T. Jr, Appl. Phys. Lett. 66, 1337 (1995).Google Scholar
4. Friessnegg, T., Aggarwal, S., Ramesh, R., Nielsen, B., Poindexter, E.H. and Keeble, D.J. to be submitted to Appl. Phys. Lett.Google Scholar
5. Positron Spectroscopy of Solids, Proceedings of the International School of Physics “Enrico Fermi”, Varena, 1993, edited by Dupasquier, A. and Mills, A. P. Jr (IOS Press Ohmsha).Google Scholar
6. Lynn, K. G., Nielsen, B., and Quateman, T. H., Appl. Phys. Lett. 47, 239 (1985).Google Scholar
7. Valkealahti, S. and Nieminen, R. M., Appl. Phys. A 32, 95 (1983).Google Scholar
8. Ghosh, V. J., Appl. Surf. Sci. 85, 187 (1995).Google Scholar
9. MacKenzie, I. K., Shulte, C. W., Jackman, T., and Campbell, J. L., Phys. Rev. A 7, 135(1973).Google Scholar
10. Veen, A. van, Shut, H., Vries, J. de, Hakvoort, R. A. and IJpma, M. R. in Positron Beams for Solids and Surfaces, edited by Schultz, P. J., Massoumi, G. R. and Simpson, P. J. (American Institute of Physics, New York, 1990) p. 171.Google Scholar
11. Keeble, D. J., Krishnan, A., Friessnegg, T., Nielsen, B., Madhukar, S., Aggarwal, S., Ramesh, R., and Poindexter, E. H., Appl. Phys. Lett. 73, 508(1998).Google Scholar
12. Friessnegg, T., Madhukar, S., Nielsen, B., Moodenbaugh, A. R., Aggarwal, S., Keeble, D. J., Poindexter, E. H., Mascher, P. and Ramesh, R., Phys. Rev. B 59, 13365 (1999).Google Scholar
13. Friessnegg, T., Aggarwal, S., Nielsen, B., Ramesh, R., Keeble, D. J., and Poindexter, E. H. in Proc. of the 11th IEEE Int'l Symp. on Appl. of Ferroelectrics, edited by Colla, E., Damjanovic, D., and Setter, N., (IEEE, Piscataway, 1998) p. 147.Google Scholar