Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T09:58:45.111Z Has data issue: false hasContentIssue false

Optical near-field enhancement around lithographic metallic nanostructures using an azo-dye polymer: direct observation and realization of sub-wavelength complex structures

Published online by Cambridge University Press:  01 February 2011

Christophe Hubert
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Anna Rumyantseva
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Gilles Lérondel
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Johan Grand
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Sergeï Kostcheev
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Laurent Billot
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Alexandre Vial
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Renaud Bachelot
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Pascal Royer
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Gilbert Chang
Affiliation:
Laboratoire de nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes, 12 rue marie curie, B.P. 2060, 10000 Troyes, France
Stephen K. Gray
Affiliation:
Chemistry Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439
Gary P. Wiederrecht
Affiliation:
Chemistry Division and Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439
George C. Schatz
Affiliation:
Department of Chemistry and Institute for Nanotechnology, Northwestern University, Evanston IL 60208
Get access

Abstract

We report on the direct observation of optical near-field enhancement around metallic nanoparticles. We used an easy to set up approach which consists in irradiating a photosensitive azo-dye polymer film spin-coated on metallic nanostructures. Photoinduced topographical modifications of the polymer film surface are characterized after irradiation by atomic force microscopy (AFM). Comparisons between AFM images and numerical simulations show that these photo-induced topography agrees with the near-field intensity distribution around the nano-structures. The possibility of generating complex structures is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krenn, J. R., Salerno, M., Félidj, N., Lamprecht, B., Schider, G., Leitner, A., Aussenegg, F. R., Weeber, J. C., Dereux, A., and Goudonnet, J. P., J. Microsc. 202, 122, (2000)Google Scholar
2. Bouhelier, A., Huser, T., Hamaru, H., Güntherodt, H. J., Pohl, D. W., Baida, F. I., and Van Labeke, D., Phys. Rev. B. 63, 155404, (2001).Google Scholar
3. Hillendrand, R., Keilmann, F., Hanarp, P., Sutherland, D. S., and Aizpurua, J., Appl. Phys. Lett., 83, 368, (2003).Google Scholar
4. Andre, P., Charra, F., Chollet, P. A., and Pileni, M. P., Adv. Mat. 14, 601, (2002).Google Scholar
5. Ikawa, T., Hasegawa, M., Tsuchimori, M., Watanabe, O., Kawata, Y., Egami, C., Sugihara, O., and Okamoto, N., Synt. Met. 124, 159, (2001).Google Scholar
6. Kik, P. G., Maier, S. A., and Atwater, H. A., Mat. Res. Soc. Symp. Proc 705, 101, (2002).Google Scholar
7. Grand, J., Kostcheev, S., Bijeon, J. L., Lamy de la Chapelle, M., Adam, P. M., Rumyantseva, A., Lérondel, G., and Royer, P., Synt. Met. 139, 621, (2003).Google Scholar
8. Jones, C., and Day, S., Nature 351, 15, (1991).Google Scholar
9. Hall, D. B., Dhinojwala, A., and Torkelson, M., Phys. Rev. Lett. 79, 103, (1997).Google Scholar
10. Kim, D. Y., Tripathy, S. K., Li, L., and Kumar, J., Appl. Phys. Lett. 66, 1166, (1995).Google Scholar
11. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett. 66, 136, (1995).Google Scholar
12. Lefin, P., Fiorini, C., and Nunzi, J. M., Opt. Materials 9, 323, (1998).Google Scholar
13. Barrett, C. J., Rochon, P., and Natansohn, A. J. Chem. Phys., 109, 1505, (1998).Google Scholar
14. Bian, S., Li, L., Kumar, J., Kim, D. Y., Williams, J., and Tripathy, S. K., Appl. Phys. Lett. 73, 1, (1995).Google Scholar
15. Taflove, A., and Hagness, S. C., “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” (Artech House, Boston, 2nd edition, 2000).Google Scholar
16. Gray, S. K., and Kupka, T., Phys. Rev. B. 68, 045415, (2003).Google Scholar