Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T16:26:40.123Z Has data issue: false hasContentIssue false

Numerical Simulations of Topographic Evolution for Sputter Deposition into Trenches and Vias

Published online by Cambridge University Press:  10 February 2011

Peter L. O'Sullivan
Affiliation:
Bell Laboratories, Lucent Technologies Murray Hill, NJ 07974
Frieder H. Baumann
Affiliation:
Bell Laboratories, Lucent Technologies Murray Hill, NJ 07974
George H. Gilmer
Affiliation:
Bell Laboratories, Lucent Technologies Murray Hill, NJ 07974
Get access

Abstract

We have performed 2D and quasi-3D numerical simulations of physical vapor deposition (PVD) into high aspect ratio trenches and vias used for modem VLSI interconnects. The topographic evolution is modeled using (continuum) level set methods. The level set approach is a powerful computational technique for accurately tracking moving interfaces or boundaries, where the advancing front is embedded as the zero level set (isosurface) of a higher dimensional mathematical function. First, we study the 2D case of long rectangular trenches including 3D out-of-plane target flux. The 3D flux is obtained from molecular dynamics computations for AI(100), and hence our approach represents a hybrid atomistic/continuum model. We obtain good agreement with X-TEM data. Secondly, we report results of axisymmetric 3D simulations of high aspect ratio vias which we then go on to compare with experimental data for Ti/TiN barrier layers. We find that the simulation data (using the cosine angular distribution) overpredict bottom coverage in some cases by approximately 20%-30% for both collimated and uncollimated deposition but in other cases provide a reasonably accurate comparison with experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Blech, I. A. and Plas, H. A. Vander, J. Appl. Phys. 54 (6) 34893496 (1983).10.1063/1.332414Google Scholar
2. Ross, R. C. and Vossen, J. L., Appl. Phys. Lett. 45 (3), 239240 (1984).10.1063/1.95196Google Scholar
3. Hamaguchi, S., Dalvie, M., Farouki, R. T. and Sethuraman, S., Phys. 74 (8), 51725184 (1993).Google Scholar
4. Osher, S. and Sethian, J. A., J. Comp. Phys. 79, 1249 (1988).10.1016/0021-9991(88)90002-2Google Scholar
5. Sethian, J. A., “Level Set Methods”, Cambridge University Press, New York (1996).Google Scholar
6. Adalsteinsson, D. and Sethian, J. A., J. Comp. Phys. 138, 193223 (1997).10.1006/jcph.1997.5817Google Scholar
7. Dew, S., Smy, T. and Brett, M., Jap. J. Appl. Phys. 33, 11401145 (1994).10.1143/JJAP.33.1140Google Scholar
8. Sheergar, M. K., Smy, T., Dew, S. K., and Brett, M. J., J. Vac. Sci. Technol. B 14, 25952602 (1996).Google Scholar
9. Cale, T. S., Rogers, B. R., Merchant, T. P. and Borucki, L. J., Comp. Mat. Sci. 12, 333353 (1998).10.1016/S0927-0256(98)00021-4Google Scholar
10. Gilmer, G. Private Communication, (1998).Google Scholar
11. Rogers, B. R., Tracy, C. J. and Cale, T. S., J. Vac. Sci. Technol. B 12(5), 29802984 (1994).Google Scholar
12. Rossnagel, S. M., Nichols, C., Hamaguchi, S., Ruzic, D. and Turkot, R., J. Vac. Sci. Technol. B 14, 18191827 (1996).10.1116/1.588562Google Scholar
13. Baumann, F. H., Liu, R., Case, C. B. and Lai, W. Y.-C., IEDM Tech. Dig. 861864 (1993).Google Scholar