Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-21T17:14:03.708Z Has data issue: false hasContentIssue false

Numerical Modeling of High Repetition Rate Pulsed Laser Crystallization of Silicon Films on Glass

Published online by Cambridge University Press:  17 March 2011

Jürgen R. Köhler
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany, juergen.koehler@ipe.uni-stuttgart.de
Ralf Dassow
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Jürgen H. Werner
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

This contribution investigates the crystallization behavior of amorphous silicon films on glass by using pulsed lasers with very high repetition rates up to 100 kHz. We determine the influence of the laser repetition rate f and of the film thickness d on the grain width g of the resulting polycrystalline silicon films. Our experimental results indicate a strong dependence of the grain width g on film thickness d as well as on the repetition rate f of the laser. The grain width rises from g = 0.27 µm to g = 3.59 µm if the film thickness increases from d = 50 nm to d= 300 nm and the repetition rate f from f = 20 kHz to 100 kHz. We use a purpose developed two- dimensional finite difference numerical model to calculate the evolution of the temperature in the silicon film and in the glass substrate. An increase of both, the film thickness d, and the repetition rate f decrease the solidification velocity v of the film. A comparison of the solidification velocity vs and the measured grain width g shows a linear correlation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sposili, R. S. and Im, J. S., Appl. Phys. Lett. 69, 2864 (1996).Google Scholar
2 Dassow, R., Köhler, J. R., Nerding, M., Strunk, H. P., Helen, Y., Mourgues, K., Bonnaud, O., Mohammed-Brahim, T., and Werner, J. H., Mat. Res. Soc. Proc. 621, in press.Google Scholar
3 Cerny, R., and Prikryl, P., Phys. Rev. B 57, 194 (1998).Google Scholar
4 Wood, R. F., Geist, G. A., and Liu, C. L., Phys. Rev. B 53, 15863 (1996).Google Scholar
5 Gupta, V. V., Song, H. Jin, and Im, J. S., Appl. Phys. Lett. 71, 99 (1997).Google Scholar
6 Andrä, G., Falk, F., Mühlig, C., Kalbac, A., and Cerny, R., Appl. Phys. A 67, 513 (1998).Google Scholar
7 Dassow, R., „Laserkristallisation von Silicium“, Thesis (Institut für Physikalische Elektronik, Universität Stuttgart, 2001).Google Scholar