Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-18T08:38:25.819Z Has data issue: false hasContentIssue false

The n-p Transition in YBa2Cu3O6–5+x

Published online by Cambridge University Press:  28 February 2011

G. M. Choi
Affiliation:
Crystal Physics & Optical Electronics Laboratory, Department of Materials Science & Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
H. L. Tuller
Affiliation:
Crystal Physics & Optical Electronics Laboratory, Department of Materials Science & Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
M.-J. Tsai
Affiliation:
Crystal Physics & Optical Electronics Laboratory, Department of Materials Science & Engineering, Massachusetts, Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The role of annealing conditions on the equilibrium defect state of the material was investigated by computer controlled 4 probe d.c. conductivity and thermoelectric power measurements on dense homogeneous ceramics prepared from citrate precursors. At elevated temperatures, the conductivity first decreases and then increases exponentially with decreasing temperature with the conductivity minima shifting to lower temperatures with decreasing PO2. This unusual behavior is described as representing a transition from n-type to p-type conduction. The n-p transition is correlated with the corresponding stoichiometry shift upon cooling from oxygen deficient (Cu1, Cu2) to oxygen excess YBa3Cu3O6–5+x, (Cu2+, Cu3+). A preliminary defect model is proposed which provides a framework for understanding a number of the experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Takayama-Muromachi, E., Uchida, Y., Ishi, M., Tanaka, T. and Kato, K., Jpn. J. Appl. Phys., 26, L1156 (1987).Google Scholar
2. Nozaki, H., Ishizawa, Y., Fukunaka, O. and Wada, H., Jpn. J. Appl. Phys., 26, L1180 (1987).Google Scholar
3. Gallagher, P. K., Adv. Cer. Mat., Vol. 2, 3B, Special Issue, 632 (1987).Google Scholar
4. O'Bryan, H. M. and Gallagher, P. K., Adv. Cer. Mat., Vol. 2. 3B, special issue, 640 (1987).Google Scholar
5. Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K. and Fueki, K., Jpn. J. Appl. Phys., 26, L1228 (1987).Google Scholar
6. Sawada, H., Iwazumi, T., Saito, Y., Abe, Y., Ikeda, H. and Yoshizaki, R., Jpn. J. Appl. Phys., 26, L1054 (1987).Google Scholar
7. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R. L., Grace, J. D., Schuller, K., Segre, C. U., Zhang, K. and Kleefisch, M. S., Phys. Rev., 36, 3608 (1987).Google Scholar
8. Pechini, M.P., U.S. Patent 3 330 697 (11 July 1967).Google Scholar
9. Jonker, G.H., Philips Res. Repts., 23, 131 (1968).Google Scholar
10. Sageev Grader, G., Gallagher, P.K. and Gyorgy, E.M., Appl. Phys. Let. 51, 5 (1987)Google Scholar
11. Smith, R. A., Semiconductors. 2nd ed. (Cambridge Univ. Press, New York, 1978).Google Scholar
12. Fueki, K., Kitazawa, K., Kishio, K. and Hasegawa, T., in Lov Temperature Electronics. (The Electrochem. Soc. Proc, Oct. 18–23, 1987 Pennington N.J.), to be published.Google Scholar
13. Tuller, H. L. and Nowick, A. S., J. Electrochem. Soc. 126, 209 (1979).Google Scholar