Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-16T05:27:51.878Z Has data issue: false hasContentIssue false

New Silicon-Carbon Materials Incorporating Si4C Building Blocks

Published online by Cambridge University Press:  10 February 2011

D. Chandrasekhar
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
J. Kouvetakis
Affiliation:
Department of Chemistry, Arizona State University, Tempe, AZ 85287–1504
J. Mc Murran
Affiliation:
Department of Chemistry, Arizona State University, Tempe, AZ 85287–1504
M. Todd
Affiliation:
Department of Chemistry, Arizona State University, Tempe, AZ 85287–1504
David J. Smith
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, AZ 85287–1704
Get access

Abstract

Novel precursor chemistry and ultrahigh-vacuum chemical vapor deposition have been used to deposit Si1-yCyth in films on (001) Si substrates. Films with carbon compositions ranging up to 20 at. % were deposited at substrate temperatures of 600–750°C using interactions of C(SiH3)4 or C(SiH2Cl)4 (C-H free precursors incorporating Si4C tetrahedra) and SiH4 gas mixtures. The composition of the resulting materials was obtained by Rutherford backscattering spectrometry including carbon resonance analysis. Cross-sectional transmission electron microscopy and infrared spectroscopy were used to provide microstructural and bonding information respectively. The effect of precursor chemistry on the composition and structure of the materials is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Patton, G.L., Comfort, J.C., Meyerson, B.S., Crabbe, E.F., Scilla, G.J., Stork, J.M.C., Sun, J.Y.- C., Harame, D.L., and Burghartz, J.N., IEEE Electron Device Lett. EDL–11, 171 (1990).Google Scholar
2. Crabbe, E.F., Comfort, J.C., Meyerson, B.S., Megdanis, A.C., Sun, J.Y.-C., and Stork, J.M.C., IEEE Electron Device Lett. EDL–13, 259 (1992).Google Scholar
3. Posthill, J.B., Rudder, R.A., Hattangady, S V., Fountain, G.G., and Markunas, R.J., Appl. Phys. Lett. 56, 734 (1990).Google Scholar
4. Iyer, S.S., Eberl, K., Goorsky, M.S., LeGoues, F.K., Tsang, J.C., and Cardone, F., Appl. Phys. Lett. 60, 356 (1992).Google Scholar
5. Bean, A.R. and Newman, R.C., J. Phys. Chem. Solids 32, 1211 (1971).Google Scholar
6. Nozaki, T., Yatsurugi, Y., and Akiyama, N., J. Electrochem. Soc. 117, 1566 (1970).Google Scholar
7. Strane, J.W., Stein, H.J., Lee, S.R., Picraux, S.T., Watanabe, J.K., and Mayer, J.W., J. Appl. Phys. 76, 3656 (1994).Google Scholar
8. Kouvetakis, J., Todd, M., Chandrasekhar, D., and Smith, D.J., Appl. Phys. Lett. 65, 2960 (1994).Google Scholar
9. Newcomb, S.B., Baxter, C.S., and Bithell, E.G., Inst. Phys. Conf. Ser. No. 93, 43 (1988).Google Scholar
10. Rucker, H., Methfessel, M., Bugiel, E., and Osten, H.J., Phys. Rev. Lett. 72, 3578 (1994).Google Scholar
11. Suzaki, Y., Inoue, S., Hasegawa, I., Yoshii, K., and Kawabe, H., Thin Solid Films 173, 235 (1989).Google Scholar
12. Saidov, M.S., Shamuratov, K.A., and Kadurev, M.A., phys. stat. solidi A 97, 347 (1986).Google Scholar