Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:35:17.289Z Has data issue: false hasContentIssue false

New Generations of Position Sensitive Silicon Detectors

Published online by Cambridge University Press:  10 February 2011

P. Burger
Affiliation:
Canberra Semiconductor, Lammerdries 25, B 2250 OLEN (Belgium)
M. Keters
Affiliation:
Canberra Semiconductor, Lammerdries 25, B 2250 OLEN (Belgium)
L. Van Buul
Affiliation:
Canberra Semiconductor, Lammerdries 25, B 2250 OLEN (Belgium)
J. Verplancke
Affiliation:
Canberra Semiconductor, Lammerdries 25, B 2250 OLEN (Belgium)
Get access

Abstract

The new generation of elementary particle and nuclear physics experiments demand instrumentation with a more precise spatial resolution and a better and faster energy response. Nuclear physics and space experiments need position sensitive pad detectors having very thin entrance windows while high energy physics and medical applications use fast microstrip or drift detectors. Silicon pixel detectors can be improved by implementing integrated electronics on it. They allow a better X-ray energy resolution and are also used in hybrid photocathode tubes for faster timing and larger dynamic range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Burger, P., De Backker, K., Schoenmaekers, W., SPIE - The International Society for Optical Engineering - Vol 591 - Solids State Imagers and their Applications (1985).Google Scholar
2. Steinbauer, E., Bauer, P., Geretschlager, M., Bortels, G., Biersack, J.P., Burger, P., Nucl. Instr. and Meth. B 85 (1994) 642649.Google Scholar
3. Laegsgaard, E., Nucl. Instr. and Meth. 162 (1979) 93111.Google Scholar
4. Lazarev, Yu. A. et al., Pysical Review Letters published by The American Physical Society, Vol 75 - Nb 10 (4 sept. 1995) 19031906.Google Scholar
5. Hofman, S. et al., GSI-94-82 preprint (nov. 1994).Google Scholar
6. Yanagimachi, T. et al., Nucl. Instr. and Meth. A 275 (1989) 307314.Google Scholar
7. Schelten, J., Engels, R. et al., Nucl. Instr. and Meth. A 389 (1997) 447453.Google Scholar
8. Vacchi, A. et al., Nucl. Instr. and Meth. A 372 (1996) 93110.Google Scholar
9. Bonvicini, V., Pindo, M., Nucl. Instr. and Meth. A 372 (1996) 93110.Google Scholar
10. Gys, T. et al., IEEE Transactions on Nuclear Science, Vol 42, Nb 6, (1995) 22212228.Google Scholar
11. Heijne, E. H. M. et al., Nucl. Instr. and Meth. A 349 (1994) 138155.Google Scholar
12. Gatti, E., Rehak, P., Nucl. Instr. and Meth 225 (1984) 608.Google Scholar
13. Riccati, L. et al., IEEE Transactions on Nuclear Science. Vol 42, Nb 5, (oct. 1995) 14971504.Google Scholar
14. Vacchi, A. et al., Nucl. Instr. and Meth. A 377 (1996) 393396.Google Scholar
15. DeSalvo, R., Nucl. Instr. and Meth. A 387 (1997) 9296.Google Scholar
16. DeSalvo, R. et al., Nucl. Instr. and Meth. A 342 (1994) 558570.Google Scholar
17. Ramsden, D. et al., Nucl. Instr. and Meth. A 387 (1997) 100103.Google Scholar