Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T23:24:46.510Z Has data issue: false hasContentIssue false

Near-Field Ultrasonic Imaging: A Novel Method for Nondestructive Mechanical Imaging of IC Interconnect Structures

Published online by Cambridge University Press:  01 February 2011

G. S. Shekhawat
Affiliation:
University at Albany Institute for Materials, Albany, NY 12222
H. Xie
Affiliation:
University at Albany Institute for Materials, Albany, NY 12222
Y. Zheng
Affiliation:
University at Albany Institute for Materials, Albany, NY 12222
R. E. Geer
Affiliation:
University at Albany Institute for Materials, Albany, NY 12222
Get access

Abstract

The investigation of an alternate approach to nondestructive, nanoscale mechanical imaging for IC interconnect structures is reported. This approach utilizes a heterodyne interferometer based on a scanning probe microscope, also referred to as heterodyne force microscopy (HFM). This interferometer is sensitive to the relative phase difference of the two ultrasonic excitations due to spatial variations in the sample viscoelastic response and enables near-field, phase-sensitive imaging. Proof-of-feasibility demonstrations of this technique are presented for ultrasonic phase-imaging of Al/low-k interconnect structures. Spatial resolution <10 nm is demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Briggs, G. A. D., Acoustic Microscopy, (Clarendon Press, Oxford, 1992) p. 28.Google Scholar
[2] Maivald, P., Butt, H. J., Gould, S. A. C., Prater, C. B., Drake, B., Gurley, J.A., Elings, V. B., and Hansma, P. K. Nanotechnology 2 103 (1991).Google Scholar
[3] Rabe, U. and Arnold, W., Appl. Phys. Lett. 64 1423 (1994).Google Scholar
[4] Kolosov, O. V., Yamanaka, K., Jpn. J. Appl. Phys. 32 1095 (1993).Google Scholar
[5] Cuberes, M. T., Assender, H. E., Briggs, G. A. D. and Kolosov, O. V., J. Phys. D: Appl. Phys. 33 2347 (2000).Google Scholar
[6] Dinelli, F., Castell, M. R., Ritchies, D. A., Mason, N. J., Briggs, G. A. D., and Kolosov, O. V., Philosophical Magazine A80 2299 (2000).Google Scholar
[7] Geer, R. E., Kolosov, O.V., Briggs, G.A.D., and Shekhawat, G. S., J. of Appl. Phys., in press.Google Scholar
[8] Vitale, S. A., Chae, H., and Sawin, H. H., J. Vac. Sci. Technol. A18 2770 (2000).Google Scholar
[9] Gundlach, Heidi, Talevi, Robert, Bian, Zailong, Nuesca, Guillermo, Sankaran, Sujatha, Kumar, Kaushik, Kaloyeros, Alain E., Geer, Robert E., Liu, Joyce, Hummel, John, Shaffer, Edward O. and Martin, Steven J., J. Vac. Sci. Technol., B18 2463 (2000).Google Scholar