Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T17:23:46.068Z Has data issue: false hasContentIssue false

MoirÉ Pattern Studies of Thin Layers Deposited on (001)Si Substrates: Cases of Tisi2 and GaAs.

Published online by Cambridge University Press:  25 February 2011

A. Rocher
Affiliation:
Laboratoire d'Optique Electronique du CNRS -29 rue Jeanne Marvig, F-31400 TOULOUSE -, FRANCE
X. Wallart
Affiliation:
Institut Supérieure d'Electronique du Nord, 41 Bd Vauban, F-59046 LILLE -, FRANCE
M.N. Charasse
Affiliation:
THOMSON-CSF/LCR - Domaine de Corbeville, F-91404 ORSAY -, FRANCE
Get access

Abstract

Moiré pattern images have been used to investigate the crystalline quality of thin films deposited on (100)Si substrates. Observations performed on TiSi2 show a three-dimensional growth process and two different epitaxial modes. In the case of GaAs epilayers, it is shown that the residual strains are not uniformly distributed in the layer. Residual strain and threading dislocations are related to imperfections of the misfit dislocation network.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J.Electron Microscopy of thin crystals”, Kreiger P.C. (1977).Google Scholar
2. Cesari, C., Le, K. Lang, Renard, D., Faure, J.P., Veillet, P. and Nihoul, G., to be published in J. Magn. Magn. Mat, (1989).Google Scholar
3.a) Bentini, G.G., Nipoti, R., Armigliato, A., Beri, M., Drigo, A.V. and Cohen, C., J.Appl.Phys. 57, 270, (1985).; b) R. Nipoti and A. Armigliato, J.Appl. Phys. 24, 1421, (1985).CrossRefGoogle Scholar
4. Beyers, R. and Sinclair, R., J.Appl.Phys, 57, 5240, (1985).CrossRefGoogle Scholar
5. Tanelian, M. and Blackstone, S., Appl.Phys.Lett. 45, 673, (1984).CrossRefGoogle Scholar
6. Catana, A., Heintze, M., Smith, P.E. and Stadelmann, P., Inst. of Phys. Conf. Ser. 87, 259, (1987).Google Scholar
7. d'Heurle, F.M., Gas, P., Engstrom, I., Nygrem, S., Ostling, M. and Peterson, C.S., IBM Research Report RC1lI51, (1985).Google Scholar
8. Wallart, X., Nys, J.P. and Dalmai, G., to be published in Proc. of the 9th European Workshop on “Refractory Metals Silicide”, (1989).Google Scholar
9. Holloway, K. and Sinclair, R., J.Appl.Phys. 61, 1359, (1987).CrossRefGoogle Scholar
10. Morgan, A., Broadbent, E.K., Ritz, K.N., Sadana, D.K. and Burrow, B.J., J.Appl.Phys., 64, 344, (1988).CrossRefGoogle Scholar
11. Van, H.J.W. Houtum and Raaijmakers, J.M.M., Mat. Res. Soc. Symp. Proc., 54, 37, (1986).Google Scholar
12.Heteroepitaxy on Silicon”, Mat. Res. Soc. Symp. Proc., vol. 67, Eds. Fan, J.C.C. and Poate, J.P. (1986); “Heteroepitaxy on Silicon II”, Mat. Res. Soc. Symp. Proc., vol. 91, Eds. J.C.C. Fan, J.M. Phillips and B.Y. Tsaur, (1987).Google Scholar
13. Heral, H., Rocher, A., Charasse, M.N., Georgalikas, A., Chazelas, J., Hirtz, J.P., Blank, H. and Siejka, J., Mat. Res. Soc. Symp. Proc., 102, 51, (1987).CrossRefGoogle Scholar
14. Ishida, K., Mat. Res. Soc. Symp. Proc., 91, 133, (1987).CrossRefGoogle Scholar