Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T18:52:15.418Z Has data issue: false hasContentIssue false

Modulation Spectroscopy Characterization of Semiconductor Heterostructures

Published online by Cambridge University Press:  21 February 2011

H. Qiang
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, NY 11210 USA
D. Yan
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, NY 11210 USA
Yichun Yin
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, NY 11210 USA
Fred H. Pollak
Affiliation:
Physics Department, Brooklyn College of CUNY, Brooklyn, NY 11210 USA
Get access

Abstract

This paper reviews the use of modulation spectroscopy for the characterization of a wide variety of semiconductor heterostructures and devices. Some systems that will be discussed include pseudomorphic GaAlAs/InGaAs/GaAs modulation-doped quantum well high electron mobility transistors (including the 300K determination of the two-dimensional electron gas density), GaAlAs/GaAs, InP/InGaAs, InGaP/GaAsInAlAs/InGaAs and InGaAs/GaAs heterojunction bipolar transistors (including the determination of the built-in fields/doping levels in the emitter and collector regions), GaAs/GaAlAs quantum well infrared detectors, quantum well lasers and GaAs/GaAlAs quantum dots. Particular attention will be paid to non-destructive, contactless techniques such as photoreflectance, contactless electroreflectance and differential reflectometry that can be performed on entire wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Pollak, F. H. and Shen, H., Materials Science and Engineering R10, 375(1993).Google Scholar
2 Glembocki, O. J. and Shanabrook, B. V., Semiconductors and Semimetals, Vol. 67, ed. Seiler, D.G. and Littler, C.L. (Academic, New York, 1992) p. 222.Google Scholar
3 Pollak, F.H., Qiang, H., Yan, D., Yin, Y., and Boccio, V.T., Photonics Spectra Magazine. Vol. 27, Issue 8, August 1993, p. 78; also, H. Qiang, D. Yan, Y. Yin and F. H. Pollak, to be published in Asia-Pacific Engineering Journal. Part A: Electrical Engineering (1993).Google Scholar
4 Tang, Y-S., Wilkinson, C.D.W., Sotomayor Torres, CM., Smith, D.W., Whall, T.E. and E.H.C, Parker, Superlattices and Microstuctures 12, 535 (1992); also, Solid State Comm. 85, 199 (1993).Google Scholar
5 Qiang, H., Pollak, F. H., Tang, Y., Wang, P.D., and Sotomayor Torres, C.M., submitted to Appl. Phys. Lett.Google Scholar
6 Wang, P.D., Sotomayor Torres, C.M., M.C, Holland, Qiang, H., Pollak, F.H. and Gumbs, G., Symposium K/M of this conference.Google Scholar
7 Mei, G., Carpenter, S., Felton, L.E. and Persans, P.D., J. Opt. Soc. Am. B9, 1394(1992); P.D. Persans, M. Silvestri, G. Mei, E. Lu, H. Yuselici and J. Schroeder, Brazilian J. Phys. 23, 144 (1993); F. Hache, D. Ricard and C Flytzanis, Appl. Phys. Lett. 55, 1504 (1989).Google Scholar
8 Boccio, V.T. and Pollak, F.H., private communicationGoogle Scholar
9 Yin, Y., Qiang, H., Pollak, F.H., Streit, D.C. and Wojtowicz, M., Appl. Phys. Lett. 61, 1579(1992); also, Proc. SPIE 1675. 498(1992).Google Scholar
10 Yin, Y., Qiang, H., Yan, D., Pollak, F.H., and Noble, T.F., Semicon. Sci. Technol. 8, 1599(1993).Google Scholar
11 Dimoulas, A., Zekentes, K., Androulidaki, M., Koraelios, N., C, Michelakis and Hatzopoulos, Z., Appl. Phys. Lett. 63, 1417 (1993).Google Scholar
12 Sydor, M., Engholm, J.R., Manasreh, M.O., Evans, K.R., Stutz, C.E. and W.C, Mitchel, Phys. Rev. B45, 13796 (1992).Google Scholar
13 Yin, X., Pollak, F. H., Pawlowicz, L., O–Neill, T. J. and Hafizi, M., Appl. Phys. Lett. 56, 1278 (1990).Google Scholar
14 Yin, X., Pollak, F. H., Pawlowicz, L., O'Neill, T. J. and Hafizi, M., Proc. Soc. Photo-Optical Instrum. Engineers (SPIE. Bellingham, 1990) 1286. 404 (1990).Google Scholar
15 Bottka, N., Gaskill, D. K., Wright, P. D., Kaliski, R. W. and Williams, D. A., J. Cryst. Growth 107, 893 (1991).Google Scholar
16 Yan, D., Pollak, F.H., Boccio, V.T., Lin, C.L., Kirchner, P.D., Woodall, J. M., R.C, Gee and Asbeck, P.M., Appl. Phys. Lett. 61, 2066 (1992).Google Scholar
17 Yang, L.W., Martin, P.A., Mazurowski, J.S., Ballingall, J.M., Y.Yin, , Yan, D., Pollak, F.H., West, W., Davito, D.B. and Kirchner, P.D., 1993 Electronic Materials Conference, Santa Barbara, June 1993 and submitted to J. Electron. Mats.Google Scholar
18 Hsu, K.T., Chen, Y.H., Chen, K.L., Chen, H.P., Lin, H.H. andJan, G.J., submitted to Appl. Phys. Lett. Google Scholar
19 Badakhshan, A., C, Durbin, Giordona, A., Glosser, R., Lambert, S. A. and Liu, J., eds. Reed, M. A. and Kirk, W. P. (Academic, New York, 1989) p. 485.Google Scholar