Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T15:03:00.329Z Has data issue: false hasContentIssue false

The Mixed Alkali Effect in Sodium Rubidium Germanate Glasses

Published online by Cambridge University Press:  25 February 2011

J. N. Mundy
Affiliation:
Materials Science and Technology Division Argonne National Laboratory, Argonne, IL 60439
G.-L. Jin
Affiliation:
Materials Science and Technology Division Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

The lack of general applicability of the many theoretical models for the mixed alkali effect (MAE) in glasses is briefly reviewed. Although the MAE appears to be related to the bonding affinity of alkali ions to charge compensating centers in the glass network, experimental scatter and the difficulty of comparing different glass networks have prevented systematic tests of this relationship. The present paper discusses why the mixed alkali germanate glasses should provide a glass system where the concentration and strength of charge-compensating centers can be systematically varied and the relationship to the MAE tested. Such tests are only possible if the ionic conductivity of a series of mixed alkali germanate glasses can be measured in a reproducible manner. The measurements of the ionic conductivity of two series of X(Na,Rb)2O:(1-X)GeO2 glasses, with X = 0.19 and X = 0.29, respectively, suggest the necessary reproducibility can be attained.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Isard, J. O., J. Non-Cryst. Solids 1, 235 (1969).Google Scholar
2. Day, D. E., J. Non-Cryst. Solids 21 343 (1976).CrossRefGoogle Scholar
3. Hakim, R. M. and Uhlmann, D. R., Phys. Chem. Glasses 8, 174 (1967).Google Scholar
4. Jain, H., Downing, H. L., and Peterson, N. L., J. Non-Tryst. Solids 55 283 (1983).CrossRefGoogle Scholar
5. Terai, R., J. Non-Cryst. Solids 6, 121 (1971).Google Scholar
6. Ivanov, A. O., Sov. Phys.-Solid State 5, 1933 (1964).Google Scholar
7. Kreidl, N. J., in Glass: Science and Technology, Vol.1, edited by Uhlmann, and Kreidl, N. J., (Academic Press, New York, 1984), p. 105 Google Scholar
8. Hayward, P. J., Phys. Chem. Glasses 18, 1 (1977).Google Scholar
9. Hakim, R. M. and Uhlmann, D. R., Phys Chem. Glasses 12, 132 (1971).Google Scholar
10. Frischat, G. H., Ionic Diffusion in Oxide Glasses, Diffusion Monograph (Trans Tech, 1975).Google Scholar
11. Mazurin, O. V. and Borisovskii, E. S., Sov. Phys.-Tech. Phys. 2, 243 (1957).Google Scholar
12. Murthy, M. K. and Ip, J., Nature (London) 201, 285 (1964).CrossRefGoogle Scholar
13. Murthy, M. K. and Ip, J., J. Am. Ceram. Soc. 47, 328 (1964).Google Scholar
14. Evstrop'ev, K. S. and Ivanov, A. O., Adv. Glass Technol., Part V, Proc. VI International Congress on Glass, Washington, DC, July 1962, p. 79.Google Scholar
15. Verweij, H. and Buster, J. H. J. M., J. Non-Cryst. Solids 34, 81 (1979).CrossRefGoogle Scholar
16. Furakawa, T. and White, W., J. Mater. Sci. 15, 1648 (1980)Google Scholar
17. Ueno, M., Misawa, M. and Susuki, K., Physica 120B, 347 (1983).Google Scholar
18. Sakka, S. and Kamiya, K., J. Non-Cryst. Solids 49, 103 (1982).Google Scholar
19. Murthy, M. K. and Scroggie, B., Phys. Chem. Glasses 6, 162 (1965).Google Scholar
20. Shelby, J. E., J. Appl. Phys. 46, 193 (1975).Google Scholar
21. Murthy, M. K. and Aguayo, J., J. Am. Ceram. Soc. 47, 444 (1964).Google Scholar
22. Evstrop'ev, K. K. and Pavlovskii, V. K., Inorg. Mater. 3, 592 (1967).Google Scholar
23. Hodge, I. M., Ingram, M. D., and West, A. R., J. Electroanal. Chem. 74, 125 (1976).Google Scholar
24. Jain, H., Downing, H. L., and Peterson, N. L., J. Non-Cryst. Solids 64, 335 (1984).Google Scholar
25. Stevels, J. M., in Handbuch der Physik, Vol.20, edited by Flogge, S. (Springer, Berlin, 1957), pp. 350391.Google Scholar
26. Evstrop'ev, K. K. and Pavlovskii, V. K., Struct. Glass 7, 103 (1966).Google Scholar
27. Ingri, N. and Lundgren, G., Acta Chem. Scand. 17, 617 (1963).Google Scholar
28. Myuller, R. L., Sov. Phys.-Solid State 2, 1219(1960).Google Scholar
29. Charles, R. J., J. Am. Ceram. Soc. 57, 165 (1965).Google Scholar
30. Lengyel, B. and Boksay, Z., Z. Phys.Chem. 203, 93 (1954); 204, 157 (1955); 233, 49, 186 (1963).Google Scholar
31. Mazurin, O. V., in Structure of Glass, Vol.4 (Consultants Bureau, New York, 1965), pp. 555.Google Scholar
32. Sakurai, J. and Ooka, K., Toshiba Rev. 23, 913 (1968).Google Scholar
33. Weyl, W. A. and Marboe, E. C., The Constitution of Glasses, Vol. II Parts I and II (Interscience, New York, 1962).Google Scholar
34. Hendrikson, J. R. and Bray, P. J., Phys. Chem. Glasses 13, 43 (1972).Google Scholar
35. Ingram, M. D., J. Am. Ceram. Soc. 63, 248 (1980).Google Scholar
36. Moynihan, C. T. and Lesikar, A. V., J. Am. Ceram. Soc. 64, 40 (1981).Google Scholar
37. Dietzel, A. H., Phys. Chem. Glasses 24, 172 (1983).Google Scholar
38. Susuki, A., Sato, H., and Kikuchi, R., Phys. Rev. B 29, 3550 (1984).Google Scholar
39. Tomandl, G. and Schaeffer, H. A., J. Non-Cryst. Solids 73, 179 (1984).Google Scholar
40. Downing, H. L., Peterson, N. L., and Jain, H., J. Non-Cryst. Solids 50, 203 (1982).CrossRefGoogle Scholar
41. Rouse, G. B. Jr., Miller, P. J., and Risen, W. M., J. Non-Cryst. Solids 28, 193 (1978).Google Scholar
42. Jain, H. and Peterson, N. L., J. Am. Ceram. Soc. 66, 174 (1983).Google Scholar