Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T15:17:41.842Z Has data issue: false hasContentIssue false

Microstructures and Photoluminescence in Nanocrystalline Barium Titanate

Published online by Cambridge University Press:  10 February 2011

M. S. Zhang
Affiliation:
Center for Materials Analysis and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China, mszhang@nju.edu.cn
J. Yu
Affiliation:
Center for Materials Analysis and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China, mszhang@nju.edu.cn
W. F. Zhang
Affiliation:
Center for Materials Analysis and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China, mszhang@nju.edu.cn
Z. Yin
Affiliation:
Center for Materials Analysis and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China, mszhang@nju.edu.cn
W. C. Chen
Affiliation:
Institute of Physics, Academia Sinica, Beijing 100080, P. R. China
Get access

Abstract

Barium titanate ultrafine particles are prepared by hydrothermal method at low temperature. Their phase structures and photoluminescence (PL) properties are examined by X-ray diffraction and Raman spectroscopy. The critical size of the cubic-tetragonal phase transition is about 48 nm and the lattice parameter ratio c/a equals 1.003. Strong photoluminescence is observed with central frequency located at 695 nm. The spectral behaviors at different annealing times and temperatures are studied. We attribute them to the semiconducting hexagonal phase embeded in the nanophase cubic BaTiO3to form trap centers and cause PL process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hwang, T. J. Choi, G. M., J. Am. Ceramic Soc. 76, p. 766 (1993).Google Scholar
2. Dey, S. K. and Lee, J. J., IEEE Trans. Electron Devices ED-39, p. 1,607 (1992).Google Scholar
3. Wu, S. Y., Takei, W. J., and Francombe, M. H., Ferroelectrics 10, p. 209 (1976).Google Scholar
4. Akishige, Y., Yamazaki, Y., Kamishina, Y., Nakanishi, T., and Mori, N., J. Korea Phys. Soc. 29, p. S616 (1996).Google Scholar
5. Frey, M. H. and Payne, D. A., Phys. Rev. B54, p. 3, 158 (1996).Google Scholar
6. Meng, J. F., Huang, Y. B., Zhang, W. F., Du, Z. L., Zhu, Z. Q., and Zou, G. T., Phys. Letts A, p. 72, (1995).Google Scholar
7. Bendale, P., Venigalla, S., Ambrose, J. R., Verink, E. D. Jr., and Adair, J. H., J. Am. Ceram. Soc. 76, p. 2,619 (1993).Google Scholar
8. Chattopadhyay, S., Ayyub, P., Palkar, V. R., and Multani, M., Phys. Rev. B 52, p. 13,177 (1995).Google Scholar
9. Yamaguchi, H., Uwe, H., Sakudo, T., and Sawaguchi, E., J. Phys. Soc. Jpn. 56, p. 589 (1987).Google Scholar
10. Frey, M. H., and Payne, D. A., Phys. Rev. B 54, p. 3,158 (1996).Google Scholar
11. Berglund, C.N. and Braun, H. J., Phys. Rev. 164, p. 790 (1967).Google Scholar
12. Bhargava, R. N., Gallagher, D., Hong, X., and Nurmikko, A., Phys. Rev. Lett. 72, p. 416 (1994).Google Scholar
13. Kanemitsu, Y., Uto, H., Masumoto, Y., and Maeda, Y., Appl. Phys. Lett. 61, p. 2,187 (1992).Google Scholar