Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T01:13:42.296Z Has data issue: false hasContentIssue false

Microstructural Characterization of Longitudinal Magnetic Recording Media

Published online by Cambridge University Press:  10 February 2011

Robert Sinclair
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205, bobsinc@stanford.edu
Dong-Won Park
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205, bobsinc@stanford.edu
Claus Habermeier
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205, bobsinc@stanford.edu
Kai Ma
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205, bobsinc@stanford.edu
Get access

Abstract

The optimization of disc manufacturing conditions is required to increase the storage capacities of magnetic recording media, which is strongly related to both magnetic properties and microstructural features. Analyzing the microstructure requires transmission electron microscopy (TEM), since the small grain sizes of the media prevent other tools from characterizing them. This paper discusses several fascinating characteristics of TEM in understanding and analyzing the properties of the recording media.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nolan, T. P., Sinclair, R., Ranjan, R. and Yamishita, T., IEEE Trans. Magn. 29, pp. 292299 (1993).Google Scholar
2.Mirzamaani, M., Jahnes, C. V. and Russak, M. A., J. Appl. Phys. 69, pp. 51695171 (1991).Google Scholar
3.Ristau, R. A., Ph. D. Dissertation, Lehigh University, 1998.Google Scholar
4.McKinlay, S., Fussing, N. and Sinclair, R., IEEE Trans. Magn. 32, pp. 35873589 (1996).Google Scholar
5.McKinlay, S., Ph. D. Dissertation, Stanford University (in preparation).Google Scholar
6.Carpenter, D. T., Rickman, J. M. and Barmak, K., J. Appl. Phys. 84, pp. 58435854 (1998).Google Scholar
7.Uesaka, Y., Takahashi, Y., Nakatani, Y., Hayashi, N. and Fukushima, H., J. Magn. Magn. Mater. 174, pp. 203218 (1997).Google Scholar
8.Chang, H. S., Shin, K. H., Lee, T. D. and Park, J. K., IEEE Trans. Magn 31, pp. 27312733 (1995).Google Scholar
9.Ishikawa, A. and Sinclair, R., IEEE Trans. Magn. 32, pp. 36033607 (1996).Google Scholar
10.Tang, K., Schabes, M. E., Ross, C. A., He, L., Ranjan, R., Yarnishita, T. and Sinclair, R., IEEE Trans. Magn. 33, pp. 40744076 (1997).Google Scholar
11.Wittig, J. E., Nolan, T. P., Sinclair, R. and Bentley, J., Mater. Res. Soc. Symp. Proc. 517, pp. 211216 (1998).Google Scholar
12.Kimoto, K., Hirano, T. and Usami, K., J. Elect. Micro., 44, pp. 8690 (1995).Google Scholar
13.Bentley, J., Wittig, J. E. and Nolan, T. P., Microscopy and Microanalysis, 5(Suppl 2) pp. 634635 (1999).Google Scholar