Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T04:24:53.489Z Has data issue: false hasContentIssue false

Microscopic Description of Plasticity in Computer Generated Metallic Nanophase Samples

Published online by Cambridge University Press:  10 February 2011

M. Spaczér
Affiliation:
Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland, helena.vs@psi.ch
H. Van Swygenhoven
Affiliation:
Paul Scherrer Institute, CH-5232, Villigen PSI, Switzerland, helena.vs@psi.ch
A. Caro
Affiliation:
Centro Atómico, 8400 Bariloche, Argentina, caro@cab.cnea.edu.ar
Get access

Abstract

We report simulations on the plastic behaviour of nanocrystalline Ni and Cu with grain sizes in the range of 3-12 nm. We observe a change in deformation mechanism in both materials: at the smallest grain sizes all deformation is accommodated in the grain boundaries, while at higher grain sizes we observe intragrain deformation. Analysis of the atomic configurations shows that stacking faults are produced by the passage of partial dislocations generated and absorbed in opposite grain boundaries. In Cu, we observe the stacking faults at smaller grain sizes than in Ni (8 and 12nm, respectively), which is attributed to the lower stacking fault energy of copper. Dislocations appear on slip systems that are not necessarily those favoured by the Schmid factor. Atomic displacement analysis shows deformation starts at triple points, with grain boundary sliding followed by the creation of intragrain partial dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Siegel, R.W., Mat. Sci. Forum 235–238, p. 851 (1997).Google Scholar
2. Gertsman, V.Y., Hoffman, M., Gleiter, H., Birringer, R., Acta Metall. Mater. 42, p.3539 (1994).Google Scholar
3. Agnew, S.R., Elliot, B.R., Youngdahl, C.J., Hemker, K.J., and Weertman, J.R., in Modelling of Structure and Mechanics from Microscale to Product, edited by Carstensen, J.V., Leffers, T., Lorentzen, T., Pedersen, O.B., Sorensen, B.F., and Winther, G. (Risó National Laboratory, Roskilde, Denmark, 1998, p. 1, and A.M. El-Sheiric, U. Erb, G. Palumbo, K.T. Aust, Scripta Metall. Mater. 27, p. 1185 (1997).Google Scholar
4. Arzt, E., Acta Metall Mater. 221, p.5611 (1998).Google Scholar
5. Swygenhoven, H. Van and Caro, A., Appl. Phys. Lett. 71, p. 12 (1997).Google Scholar
6. Swygenhoven, H. Van and Caro, A., Phys. Rev. B 58, p. 11246 (1998).Google Scholar
7. Swygenhoven, H. Van, Spaczér, M., Caro, A., Nanostruct. Mater. 10, p.819 (1998).Google Scholar
8. Swygenhoven, H. Van, Spaczér, M., Caro, A., Farkas, D., Proc. of the Fourth International Conference on Nanostructured Materials, NANO'98, Stockholm, Sweden, June 1998 Google Scholar
9. Schiøtz, J., DiTolla, F.D., and Jacobsen, K.W.. Nature 391, p.561 (1998).Google Scholar
10. Chen, Z. and Ding, J., Nanostruc. Mater. 10, p.205 (1998).Google Scholar
11. Voronoi, G.Z., Reine Angew. Math. 134, p. 199 (1908).Google Scholar
12. Cleri, F. and Rosato, V., Phys. Rev. B 48, p. 48 (1993).Google Scholar
13. Zhu, H. and Averback, R.S.. Phys. Rev. B 51, p. 15559 (1995).Google Scholar
14. Hirth, J.P. and Loilic, J. in Theorv of Dislocations. Ed. by J. Wiley & Sons, NY 1982.Google Scholar
15. Honeycutt, D.J. and Andersen, H.C., J. Phys. Chem 91. p.4950 (1987).Google Scholar