Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T10:28:02.541Z Has data issue: false hasContentIssue false

Microfluidic Approaches for the Study of Emulsions: Transport of Solutes

Published online by Cambridge University Press:  01 February 2013

Philipp Gruner
Affiliation:
Max Planck Institute for Dynamics and Self-organization, Am Fassberg 17, Goettingen, Germany.
Yousr Skhiri
Affiliation:
Université Paris Descartes, 45 Rue des Saints-Pères, Paris, France. ISIS-CNRS-Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
Benoit Semin
Affiliation:
Max Planck Institute for Dynamics and Self-organization, Am Fassberg 17, Goettingen, Germany.
Quentin Brosseau
Affiliation:
Max Planck Institute for Dynamics and Self-organization, Am Fassberg 17, Goettingen, Germany.
Andrew D. Griffiths
Affiliation:
ISIS-CNRS-Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg, France.
Valérie Taly
Affiliation:
Université Paris Descartes, 45 Rue des Saints-Pères, Paris, France.
Jean-Christophe Baret
Affiliation:
Max Planck Institute for Dynamics and Self-organization, Am Fassberg 17, Goettingen, Germany.
Get access

Abstract

Molecular transport as an ageing process in emulsions is revisited using microfluidic droplet production, manipulation and analysis. We show how microfluidic systems provide extremely quantitative insights into the phenomenon. We designed microfluidic systems to address the specificity of molecular transport in fluorinated oils and showed the role of the surfactant solubilised in the oil phase on the time scale of the exchange and rationalize the effect of water soluble additives on the exchange rate. Finally, we also demonstrate that the droplet packing influences the exchange rate through the number of first neighbours.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Theberge, A.B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F. and Huck, W.T.S.. Microdroplets in microfluidics: An evolving plat-form for discoveries in chemistry and biology. Angew. Chem., Int. Ed., 49:58465868, (2010)CrossRefGoogle Scholar
Guo, M.T., Rotem, A., Heyman, J.A. and Weitz, D.A.. Droplet microfluidics for high-throughput biological assays. Lab Chip, 12:21462155 (2012)CrossRefGoogle ScholarPubMed
Agresti, J.J., Antipov, E., Abate, A.R., Ahn, K., Rowat, A.C., Baret, J.-C., Marquez, M., Klibanov, A. M., Griffiths, A.D. and Weitz, D.A.. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. U.S.A., 107(9):40044009 (2010)CrossRefGoogle ScholarPubMed
Miller, O.J., Harrak, A. El, Mangeat, T., Baret, J.-C., Frenz, L., Debs, B. El, Mayot, E., Samuels, M.L., Rooney, E.K., Dieu, P., Galvan, M., Link, D.R. and Griffiths, A.D.. High-resolution dose-response screening using droplet-based microfluidics. Proc. Natl. Acad. Sci. U.S.A., 109(2):378383 (2012)CrossRefGoogle ScholarPubMed
Baret, J.-C., Beck, Y., Billas-Massobrio, I., Moras, D. and Griffiths, A.D.. Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem. Biol., 17(5):528536 (2010)CrossRefGoogle ScholarPubMed
Seemann, R., Brinkmann, M., Pfohl, T., and Herminghaus, S.. Droplet-based microfluidics. Reports on Progress in Physics, 75:016601 (2012)CrossRefGoogle ScholarPubMed
Bibette, J., Leal-Calderon, F. and Poulin, P., Emulsions: basic principles, Rep. Prog. Phys., 62, 9691033 (1999)CrossRefGoogle Scholar
Bremond, N., Thiam, A.R. and Bibette, J., Decompressing emulsion droplets favors coalescence, Phys.Rev. Lett.,100:024501 (2008)CrossRefGoogle ScholarPubMed
Baret, J.-C., Kleinschmidt, F., Harrak, A. E. and Griffiths, A. D., Kinetic Aspects of Emulsion Stabilization by Surfactants: A Microfluidic Analysis, Langmuir, 25, 60886093 (2009).CrossRefGoogle ScholarPubMed
Boitard, L., Cottinet, D., Kleinschmitt, C., Bremond, N., Baudry, J., Yvert, G., and Bibette, J., Monitoring single cells bio-energetics via the coarsening of emulsion droplets, Proc. Natl. Acad. Sci. U.S.A., 109(19) 71817186 (2012)CrossRefGoogle Scholar
Skhiri, Y., Gruner, P., Semin, B., Brosseau, Q., Pekin, D., Mazutis, L., Goust, V., Kleinschmidt, F., Harrak, A. El, Hutchison, J. B., Mayot, E., Bartolo, J.-F., Griffiths, A.D., Taly, V. and Baret, J.-C., Dynamics of molecular transport by surfactants in emulsions, Soft Matter, 8, 10618 (2012)CrossRefGoogle Scholar
Xia, Y. N. and Whitesides, G. M.. Soft lithography. Annu. Rev. Mater. Sci., 28:153184 (1998)CrossRefGoogle Scholar
Anna, S.L., Bontoux, N., Stone, H.A., Formation of dispersions using flow focusing in microchannels, Applied Physics Letters, 82(3) 364366 (2003)CrossRefGoogle Scholar
Holtze, C., Rowat, A. C., Agresti, J. J., Hutchison, J. B., Angile, F. E., Schmitz, C. H. J., Koester, S., Duan, H., Humphry, K. J., Scanga, R. A., Johnson, J. S., Pisignano, D. and Weitz, D. A., Biocompatible surfactants for water-in-fluorocarbon emulsions, Lab Chip, 8, 16321639 (2008)CrossRefGoogle ScholarPubMed
Woronoff, G., Harrak, A. E., Mayot, E., Schicke, O., Miller, O. J., Soumillion, P., Griffiths, A. D. and Ryckelynck, M., New Generation of Amino Coumarin Methyl Sulfonate-Based Fluorogenic Substrates for Amidase Assays in Droplet-Based Microfluidic Applications, Anal. Chem., 83, 28522857 (2011)CrossRefGoogle ScholarPubMed
Courtois, F., Olguin, L. F., Whyte, G., Theberge, A. B., Huck, W. T. S., Hollfelder, F. and Abell, C., Controlling the Retention of Small Molecules in Emulsion Microdroplets for Use in Cell-Based Assays, Anal. Chem., 81, 30083016 (2009)CrossRefGoogle ScholarPubMed
Peters, T., All about Albumin: Biochemistry, Genetics and Medical Applications, Academic Press, 1995.Google Scholar
Zwolinski, B. J., Eyring, H. and Reese, C. E., Diffusion and membrane permability.1, J. Phys. Chem., 53, 14261453 (1949).CrossRefGoogle Scholar