Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T23:43:45.214Z Has data issue: false hasContentIssue false

Matrix Formation Leading to Catalyst Free Growth of GaN Nanowires

Published online by Cambridge University Press:  01 February 2011

Joshua B. Halpern
Affiliation:
jhalpern@howard.edu, Howard University, Chemistry, Washington, District of Columbia, United States
Gary L. Harris
Affiliation:
gharris@msrce.howard.eduglharris1124@mac.com, Howard University, Howard Nanofabrication Facility, Washington, District of Columbia, United States
Maoqi He
Affiliation:
mqhe@msrce.howard.edu, Howard University, Howard Nanofabrication Facility, Washington, District of Columbia, United States
Piezhen Zhou
Affiliation:
pzhou@msrce.howard.edu, Howard University, Howard Nanofabrication Facility, Washington, District of Columbia, United States
Christina E. Cheek
Affiliation:
ccheek@howard.edu, Howard University, Electrical Engineering, Washington, District of Columbia, United States
Get access

Abstract

Catalyst-free vapor-solid GaN nanowire growth occurs when ammonia flows over Ga first forming a GaN matrix, the top layer of which is composed of hexagonal platelets. Multiphase nanowire growth occurs at nanoscale nucleation sites on the GaN platelets. Lower layers of the matrix are Ga rich, upper ones are stoichiometrically GaN. Gallium for later stages of growth is sourced from the decomposition of GaN particles and Ga rich GaN. Growth temperature exerts a strong influence on nucleation site formation. Scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) was used to characterize the matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Fan, H.J., Werner, P. and Zacharias, M., Small, 2, 700 (2006)Google Scholar
[2] Agarwal, R. and Lieber Charles, M., Applied Physics A: Materials Science & Processing, 85, 209 (2006)Google Scholar
[3] Law, M., Goldberger, J. and Yang, P., Annual Review of Materials Research, 34, 83 (2004)Google Scholar
[4] Chen, C.-C., Yeh, C.-C., Chen, C.-H., Yu, M.-Y., Liu, H.-L., Wu, J.-J., Chen, K.-H., Chen, L.-C., Peng, J.-Y. and Chen, Y.-F., Journal of the American Chemical Society, 123, 2791 (2001)Google Scholar
[5] He, M.Q., Minus, I., Zhou, P.Z., Mohammed, S.N., Halpern, J.B., Jacobs, R., Sarney, W.L., Salamanca-Riba, L. and Vispute, R.D., Applied Physics Letters, 77, 3731 (2000)Google Scholar
[6] Jacobs, R.N., Salamanca-Riba, L., He, M.Q., Harris, G.L., Zhou, P., Mohammad, S.N. and Halpern, J.B., Materials Research Society Symposium Proceedings, 675(Nanotubes, Fullerenes, Nanostructured and Disordered Carbon), W9.4.1 (2001)Google Scholar
[7] Mohammad, S.N., Harris, G.L., Halpern, J.B., Jacobs, R., S.W.L., , Salamanca-Riba, L., He, M.Q. and Zhou, P.Z., Journal of Crystal Growth, 231, 357 (2001)Google Scholar
[8] Halpern, J.B., Bello, A., Gilcrease, J., Harris, G.L. and He, M., Microelectronics Journal, doi: 10.1016/j.mejo.2008.07.022 (2008)Google Scholar
[9] Ayres, V.M., Jacobs, B.W., Englund, M.E., Carey, E.H., Crimp, M.A., Ronningen, R.M., Zeller, A.F., Halpern, J.B., He, M.Q., Harris, G.L., Liu, D., Shaw, H.C. and Petkov, M.P., Diamond and Related Materials, 15, 1117 (2006)Google Scholar
[10] Jacobs, B.W., Ayres, V.M., Petkov, M.P., Halpern, J.B., He, M., Baczewski, A.D., Mcelroy, K., Crimp, M.A., Zhang, J. and Shaw, H.C., Nano Letters, 7, 1435 (2007)Google Scholar
[11] Jacobs, B.W., Ayers, V., Stallcup, R.E., Hartman, A., Tupta, M.A., Baczewski, A., D., , Crimp, M., A., , Halpern, J., B., , He, M. and Shaw, H., C., , Nanotechnology, 18, 475710 (2007)Google Scholar
[12] He, M., Motayed, A. and Mohammad, S.N., Journal of Chemical Physics, 126, 064704 (2007)Google Scholar
[13] Wikenden, A.E., Wickenden, D.K. and Kietenmacher, T.J., Journal of Applied Physics, 75, 5367 (1994)Google Scholar
[14] Narayan, J., Pand, P., Chugh, A., Choi, H. and Fan, J.C.C., Journal of Applied Physics, 99, 054313 (2006)Google Scholar
[15] Koleske, D.D., Coltrin, M.E., Cross, K.C., Mitchell, C.C. and Allerman, A.A., Journal of Crystal Growth, 273, 86 (2004)Google Scholar
[16] Koleske, D.D., Coltrin, M.E. and Russell, M.J., Journal of Crystal Growth, 279, 37 (2005)Google Scholar
[17] Koleske, D.D., Coltrin, M.E., Allerman, A.A., Cross, K.C., Mitchell, C.C. and Figiel, J.J., Applied Physics Letters, 82, 1170 (2003)Google Scholar
[18] Lada, M., Cullis, A.G. and Parbrook, P.J., Journal of Crystal Growth, 258, 89 (2003)Google Scholar