Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T12:18:58.187Z Has data issue: false hasContentIssue false

Magnetic Behavior of Ultrathin Films of Pseudomorphic Binary Alloys

Published online by Cambridge University Press:  15 February 2011

S.Z. Wu
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802
F.O. Schumann
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802
G.J. Mankey
Affiliation:
Department of Physics, Louisiana State University, Baton Rouge, LA 70803.
R.F. Willis
Affiliation:
Department of Physics, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

In this work we compare the ferromagnetic behavior of ultrathin FexNi(1-x) and CoxNi(1-x) films grown on Cu(100) epitaxially with varying stoichiometry. The thickness regime chosen was 1 to 5 ML over a wide range of alloy composition. Using a finite-size scaling law we proposed for the Curie temperature vs. film thickness measurements, we extrapolate and plot the bulk fee Curie temperature as a function of composition. The results suggest that the growth of these films is pseudomorphic with the films adapting a fee structure and the Cu lattice constant. Besides, the Invar effect is not observed in these ultrathin films of FexNi(1-x) alloys and the magnetic phase of Fe atoms is the low-spin ferromagnetic phase. The CoxNi(1-x) films show the expected monotonic decrease in Tc with increasing Ni content.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Courths, R., and Hufner, S., Phys. Rep. 112, 53 (1984).Google Scholar
2. Knapp, J.A., Himpsel, F.J., and Eastman, D.E., Phys. Rev. B 19, 4952 (1979).Google Scholar
3. Eberhardt, W., and Plummer, E.W., Phys. Rev. B 21, 3245 (1980).Google Scholar
4. Miranda, R., Chandesris, D., and Lecante, J., Surf. Sci. 130, 269 (1983).Google Scholar
5. Schneider, C.M., Schuster, P., Hammond, M., Ebert, H., Nofflce, J., and Kirshner, J., J. Phys. C 3, 4349 (1991).Google Scholar
6. Clemens, W., Katchel, T., Rader, O., Blugel, S., Carbone, C., and Eberhardt, W., Solid State Commun. 81, 739 (1992).Google Scholar
7. Hezaveh, A.A., Jennings, G., Pescia, D., Willis, R.F., Prince, K., Surman, M., and Bradshaw, A., Solid State Commun. 57, 329 (1986).Google Scholar
8. Onellion, M.F., Fu, C.L., thompson, M.A., Erskine, J.L., and Freeman, A.J., Phys. Rev. B 33, 7322 (1986).Google Scholar
9. Pappas, D.P., Kamper, K.-P., Miller, B.P., Hospter, H., Fowler, D.E., Brundle, C.R., Luntz, A.C., and Shen, Z.-X, Phys. Rev. Lett. 66, 504 (1991).Google Scholar
10. Mankey, G.J., Willis, R.F., and Himpsel, F.J., Phys. Rev. B 48, 10284 (1993).Google Scholar
11. Mankey, G.J., Wu, S.Z., Schumann, F.O., Huang, F., Kief, M.T., and Willis, R.F., J. Vac. Sci. Technol. A 13, 1531 (1995).Google Scholar
12. Qiu, Z. Q., Pearson, J., and Bader, S. D., Phys. Rev. Lett. 70, 1006 (1993).Google Scholar
13. Li, D., Freitag, M., Pearson, J., Qiu, Z. Q., and Bader, S. D., Phys. Rev. Lett. 72, 3112 (1994).Google Scholar
14. Pappas, D.P., Brundle, C.R., and Hopster, H., Phys. Rev. B 45, 8169 (1992).Google Scholar
15. Fritzsche, H., Kohlhepp, J., Elmers, H.J., and Gradmann, U., Phys. Rev. B 49, 15665 (1994).Google Scholar
16. Lugert, G., Robl, W., Pfau, L., Brockmann, M., and Bayreuther, G., J. Magn. Magn. Mater. 121, 498 (1993).Google Scholar
17. Pappas, D.P., Kamper, K.-P., and Hopster, H., Phys. Rev. Lett. 64, 3179 (1990).Google Scholar
28. Allenspach, R., and Bischof, A., Phys. Rev. Lett. 69, 3385 (1992).Google Scholar
19. Koon, N.C., Jonker, B.T., Volkening, F.A., Krebs, J.J., and Prinz, G.A., Phys. Rev. Lett. 59, 2463 (1987).Google Scholar
20. Heinrich, B., Urquhart, K.B., Dutcher, J.R., Purcell, S.T., Cochran, J.F., and Arrott, A.S., J. Appl. Phys. 63,3385(1988).Google Scholar
21. Wu, S.Z., Mankey, G.J., Huang, F., and Willis, R.F., J. Appl. Phys. 76, 6434 (1994).Google Scholar
22. Bochi, G., Ballentine, C.A., Inglefield, H.E., Bogomolov, S.S., Thompson, C.V., and O'Handley, R.C., J. Appl. Phys. 75, 6430 (1994).Google Scholar
23. Gay, J.G., and Richter, R., J. Appl. Phys. 61, 3362 (1987).Google Scholar
24. Wang, D.-S., Wu, R., and Freeman, A.J., J. Appl. Phys. 73, 6745 (1993).Google Scholar
25. Krams, P., Lauks, F., Stamps, R.L., Hillebrands, B., and Guntherodt, G., Phys. Rev. Lett. 69, 3674(1992).Google Scholar
26. Moruzzi, V.L., Marcus, P.M., Schwarz, K., and Mohn, P., Phys. Rev. B 34, 1784 (1986).Google Scholar
27. Krasko, G.L., Phys. Rev. B 36, 8565 (1987).Google Scholar
28. Fernando, G.W., and Cooper, B.R., Phys. Rev. B 38, 3016 (1988).Google Scholar
29. Bagayoko, D., and Callaway, J., Phys. Rev. B 28, 5419 (1983).Google Scholar
30. Moruzzi, V.L., Phys. Rev. Lett. 57, 2211 (1986).Google Scholar
31. Podgorny, M., J. Magn. Magn. Mater. 78, 352 (1989).Google Scholar
32. Abrikosov, L.A., Eriksson, O., Soderlind, P., Skriver, H.L., and Johansson, B., Phys. Rev. B 51, 1058(1995).Google Scholar
33. Wasserman, E.F., Ferromagnetic Materials, edited by Buschow, K.H.J., and Wohlfarth, E.P., (North-Holland, Amsterdam, 1990), Vol. 5, P. 237.Google Scholar
34. Schumann, F.O., Wu, S.Z., Mankey, G.J., and Willis, R.F., submitted to J. Appl. Phys. Google Scholar
35. Santoni, A., and Himpsel, F.J., Phys. Rev. B 43, 1305 (1991).Google Scholar
36. Although this scaling law was initially introduced to fit the Curie temperature measurement of ultrathin films approaching single monolayer thickness, we found that it works on those thicker films as well, in our case, films up to 20 ML. Besides, it works on different films on substrates with different surface orientation. It does not show any apparent dependency on film morphology or microstructure.Google Scholar
37. Vonsovskii, S.V., Magnetism. John Wiley & Sons, New York, 1974.Google Scholar