Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-02T17:03:55.407Z Has data issue: false hasContentIssue false

Lithographic Materials Technologies: 193 nm Imaging and Beyond

Published online by Cambridge University Press:  10 February 2011

Elsa Reichmanis
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, New Jersey 07974
Omkaram Nalamasu
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, New Jersey 07974
Francis M. Houlihan
Affiliation:
Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, New Jersey 07974
Allen H. Gabor
Affiliation:
Arch Chemicals, 200 Massasoit Ave., East Providence, Rhode Island 02914
Mark O. Neisser
Affiliation:
Arch Chemicals, 200 Massasoit Ave., East Providence, Rhode Island 02914
Murrae J. Bowden
Affiliation:
Arch Chemicals, 200 Massasoit Ave., East Providence, Rhode Island 02914
Get access

Abstract

Advances in microlithographic resist materials have been a key enabler of the unabated productivity gains in the electronics industry and are continuing to help push the ultimate limits of optical lithography. The challenges posed by the introduction of new optical lithography technologies that use smaller wavelengths have been successfully met by the materials community through the design of chemically amplified resist technologies and 193 nm resist materials based on aliphatic polymers and dissolution inhibitors. With continued advances in resist materials, exposure systems and resolution enhancement and mask technologies, optical lithography will be capable of patterning ≤ 0.1 μm design rule devices in future fabs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Reichmanis, E., Nalamasu, O., Houlihan, F. M., Accts. Chem. Res. 32, p. 659 (1999).Google Scholar
2.Thompson, L. F., Willson, C. G., Bowden, M. J., Introduction to Microlithography; ACS Professional Reference Book, American Chemical Society, Washington D. C. 1994.Google Scholar
3.Nalamasu, O., Houlihan, F. M., Cirelli, R. A., Watson, G. P., Reichmanis, E., Solid State Technology, 42(5), p. 29 (1999).Google Scholar
4. a) C. G. Willson, H. Ito, J. M. J. Frechet, Technical Papers-1982 Symposium on VLSI Technology, Kanaagawa, Japan, September 1982, p. 86 b) Willson, C. G., Ito, H., Frechet, J. M. J., Tessier, T. G., Houlihan, F. M., J. Electrochem. Soc. 133, p. 181 (1986), c) E. Reichmanis, F. M. Houlihan, O. Nalamasu, T. X. Neenan, Chem. Mater. 3, p. 394 (1991), d) C. G. Willson, M. J. Bowden, in Electronic and Photonic Applications of Polymers, M. J. Bowden, S. R. Turner, eds, ACS Advances in Chemistry Series 218, American Chemical Society, Washington D. C. 1988, p. 75–108, e) T. Iwayanagi, T. Ueno, S. Nonogaki, H. Ito, C. G. Willson, ibid, p. 109–224.Google Scholar
5. a) Ohnishi, Y., Mizuko, M., Gokan, H., Fujiwara, S., J. Vac. Sci. Technol. 19(4), p. 1141 (1981), b) H. Gokan, S. Esho, Y. Ohnishi, J. Electrochem. Soc. 130, p. 143 (1983), c) R. Kunz, G. M. Wallraff, R. A. DiPietro, D. C. Hofer, Proc. SPIE, 1925, p. 167 (1993).Google Scholar
6.Nakano, K., Maeda, K., lwasa, S., Ohfuji, T., Proc. SPIE, 2438, p. 433 (1995), b) R. D. Allen, I. T. Wan, G. M. Wallraff, R. A. DiPietro, D. C. Hofer, R. R. Kunz, J.Photopolym. Sci. Technol. 8, p. 623 (1995).Google Scholar
7.Houlihan, F. M., Wallow, T. I., Nalamasu, O., Reichmanis, E., Macromolecules, 30, p. 6517 (1997).Google Scholar
8.Rushkin, I. L., Houlihan, F. M., Kometani, J. M., Hutton, R. S., Timko, A. G., Reichmanis, E., Gabor, A. H., Medina, A. N., Slater, S. G., Neisser, M., Proc. SPIE, 3678, p. 44 (1999).Google Scholar
9.R., Dammel. in Diazonaphthoquinone-based Resists, Shea, D., Ed., SPIE Optical Engineering Press, Bellingham, WA, 1993, p. 70.Google Scholar
10.Wallow, T. I., Houlihan, F. M., Nalamasu, O., Chandross, E. A., Neenan, T. X., Reichmanis, E., Proc. SPIE, 2724, p. 355 (1996).Google Scholar
11. a) Houlihan, F. M., Wallow, T. I., Timko, A. G., Neria, S. E., Hutton, R. S., Cirelli, R. A., Nalamasu, O., Reichmanis, E., Proc. SPIE, 3049, p. 84 (1997), b) F. M. Houlihan, T. I. Wallow, A. G. Timko, S. E. Neria, R. S. Hutton, R. A. Cirelli, J. M. Kometani, O. Nalamasu, E. Riehcmanis, J. Photopolym. Sci. Technol., 10(3), p511 (1997), c) R. D. Allen, J. Ortiz, C. E. Larson, T. I. Wallow, R. A. DiPietro, G. Breyta, R. Sooriyakumaran, D. C. Hofer, J. Pholopolym. Sci. Technol., 10(4), p. 503 (1997).Google Scholar
12.Kunz, R. R., Downs, D. K., J. Vac. Sci. Technol. 17(6), (1999), b) F. M. Houlihan, I. L. Rushkin. R. S. Hutton. A. G. Timko. O. Nalamasu. E. Reichmanis. A. H. Gabor, A. N. Medina, S. Malik, M. Neisser, R. R. Kunz, D. K. Downs, Proc. SPIE, 3678, p. 264 (1999), c) F. M. Houlihan, I. L. Rushkin, R. S. Hutton, A. G. Timko, O. Nalamasu, E. Reichmanis, A. H. Gabor, A. N. Medina, S. Malik, M. Neisser, R. R. Kunz, D. K. Downs, J. Photopolym. Sci. Technol., 12, p. 525 (1999).Google Scholar
13.Kunz, R.R., Bloomstein, T.M., Hardy, D.E., Goodman, R.B., Downs, D.K., and Curtin, J.E., Proc. SPIE, 3678, p. 13 (1999).Google Scholar
14.Novembre, A.E., Ocola, L.E., Houlihan, F., Knurek, C., Blakey, M., J. Photopolym. Sci. Technol., 11, p. 541 (1998).Google Scholar